首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1519篇
  免费   189篇
  2022年   19篇
  2021年   32篇
  2020年   16篇
  2019年   26篇
  2018年   37篇
  2017年   29篇
  2016年   37篇
  2015年   47篇
  2014年   56篇
  2013年   81篇
  2012年   67篇
  2011年   75篇
  2010年   50篇
  2009年   56篇
  2008年   56篇
  2007年   75篇
  2006年   60篇
  2005年   57篇
  2004年   42篇
  2003年   37篇
  2002年   55篇
  2001年   30篇
  2000年   32篇
  1999年   29篇
  1998年   25篇
  1997年   20篇
  1996年   12篇
  1995年   16篇
  1994年   17篇
  1993年   13篇
  1992年   25篇
  1991年   23篇
  1990年   27篇
  1988年   22篇
  1987年   17篇
  1986年   16篇
  1985年   15篇
  1984年   13篇
  1983年   12篇
  1982年   14篇
  1980年   14篇
  1979年   14篇
  1978年   21篇
  1977年   12篇
  1976年   15篇
  1974年   14篇
  1972年   11篇
  1971年   19篇
  1970年   14篇
  1968年   15篇
排序方式: 共有1708条查询结果,搜索用时 15 毫秒
81.

Introduction

APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of this study was non-invasively to study effect of APO866 treatment on [18F]FLT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake.

Methods

In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) was studied at various time points after APO866 treatment. Baseline [18F]FLT or [18F]FDG scans were made before treatment and repeated after 24 hours, 48 hours and 7 days. Tumor volume was followed with computed tomography (CT). Tracer uptake was quantified using small animal PET/CT. One hour after iv injection of tracer, static PET scans were performed. Imaging results were compared with Ki67 immunohistochemistry.

Results

Tumors treated with APO866 had volumes that were 114% (24 h), 128% (48 h) and 130% (Day 7) relative to baseline volumes at Day 0. In the control group tumor volumes were 118% (24 h), 145% (48 h) and 339% (Day 7) relative to baseline volumes Day 0. Tumor volume between the treatment and control group was significantly different at Day 7 (P = 0.001). Compared to baseline, [18F]FLT SUVmax was significantly different at 24 h (P<0.001), 48 h (P<0.001) and Day 7 (P<0.001) in the APO866 group. Compared to baseline, [18F]FDG SUVmax was significantly different at Day 7 (P = 0.005) in the APO866 group.

Conclusions

APO866 treatment caused a significant decrease in [18F]FLT uptake 24 and 48 hours after treatment initiation. The early reductions in tumor cell proliferation preceded decrease in tumor volume. The results show the possibility to use [18F]FLT and [18F]FDG to image treatment effect early following treatment with APO866 in future clinical studies.  相似文献   
82.
83.
84.

Fluorescence spectroscopy is a common tool to assess optical dissolved organic matter (DOM) and a number of characteristics, including DOM biodegradability, have been inferred from these analyses. However, recent findings on soil and DOM dynamics emphasize the importance of ecosystem-scale factors, such as physical separation of substrate from soil microbial communities and soil physiochemical cycles driving DOM stability. We apply this principle to soil derived DOM and hypothesize that optical properties can only supply information on biodegradability when evaluated in the larger ecosystem because substrate composition and the activity/abundance of the microbial community ultimately drive DOM degradation. To evaluate biodegradability in this context, we assessed aqueous soil extracts for water extractable organic carbon (WEOC) content, biodegradability, microbial biomass and DOM characteristics using fluorescence spectroscopy across a range of environmental conditions (covariant with season and land use) in northern Vermont, USA. Our results indicate that changes in environmental conditions affect composition, quantity, and biodegradability of DOM. WEOC concentrations were highest in the fall and lowest in the summer, while no significant differences were found between land covers; however, DOM biodegradability was significantly higher in the agricultural site across seasons. Despite a shift in utilized substrate from less aromatic DOM in summer to more aromatic DOM in winter, biodegradability was similar for all seasons. The only exception was cold temperature incubations where microbial activity was depressed, and processing was slowed. These results provide examples on how fluorescence based metrics can be combined with context relevant environmental parameters to evaluate bioavailability in the context of the larger ecosystem.

  相似文献   
85.
86.
Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.  相似文献   
87.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   
88.
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.  相似文献   
89.
Bark beetle populations have drastically increased in magnitude over the last several decades leading to the largest-scale tree mortality ever recorded from an insect infestation on multiple wooded continents. When the trees die, the loss of canopy and changes in water and nutrient uptake lead to observable changes in hydrology and biogeochemical cycling. This review aims to synthesize the current research on the effects of the bark beetle epidemic on nutrient cycling and water quality while integrating recent and relevant hydrological findings, along with suggesting necessary future research avenues. Studies generally agree that snow depth will increase in infested forests, though the magnitude is uncertain. Changes in evapotranspiration are more variable as decreased transpiration from tree death may be offset by increased understory evapotranspiration and ground evaporation. As a result of such competing hydrologic processes that can affect watershed biogeochemistry along with the inherent variability of natural watershed characteristics, water quality changes related to beetle infestation are difficult to predict and may be regionally distinct. However, tree-scale changes to soil–water chemistry (N, P, DOC and base cation concentrations and composition) are being observed in association with beetle outbreaks which ultimately could lead to larger-scale responses. The different temporal and spatial patterns of bark beetle infestations due to different beetle and tree species lead to inconsistent infestation impacts. Climatic variations and large-scale watershed responses provide a further challenge for predictions due to spatial heterogeneities within a single watershed; conflicting reports from different regions suggest that hydrologic and water quality impacts of the beetle on watersheds cannot be generalized. Research regarding the subsurface water and chemical flow-paths and residence times after a bark beetle epidemic is lacking and needs to be rigorously addressed to best predict watershed or regional-scale changes to soil–water, groundwater, and stream water chemistry.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号