首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1519篇
  免费   189篇
  2022年   19篇
  2021年   32篇
  2020年   16篇
  2019年   26篇
  2018年   37篇
  2017年   29篇
  2016年   37篇
  2015年   47篇
  2014年   56篇
  2013年   81篇
  2012年   67篇
  2011年   75篇
  2010年   50篇
  2009年   56篇
  2008年   56篇
  2007年   75篇
  2006年   60篇
  2005年   57篇
  2004年   42篇
  2003年   37篇
  2002年   55篇
  2001年   30篇
  2000年   32篇
  1999年   29篇
  1998年   25篇
  1997年   20篇
  1996年   12篇
  1995年   16篇
  1994年   17篇
  1993年   13篇
  1992年   25篇
  1991年   23篇
  1990年   27篇
  1988年   22篇
  1987年   17篇
  1986年   16篇
  1985年   15篇
  1984年   13篇
  1983年   12篇
  1982年   14篇
  1980年   14篇
  1979年   14篇
  1978年   21篇
  1977年   12篇
  1976年   15篇
  1974年   14篇
  1972年   11篇
  1971年   19篇
  1970年   14篇
  1968年   15篇
排序方式: 共有1708条查询结果,搜索用时 78 毫秒
101.
The purpose of this study was to determine the prevalence of antibiotic-resistant bacteria and endotoxin in soil after land application of biosolids. Soil was collected over a 15 month period following land application of biosolids, and antibiotic resistance was ascertained using clinically relevant antibiotic concentrations. Ampicillin, cephalothin, ciprofloxacin, and tetracycline resistance were all monitored separately for any changes throughout the 15 month period. Endotoxin soil concentrations were monitored using commercially available endotoxin analysis reagents. Overall, land application of biosolids did not increase the percentage of antibiotic-resistant culturable bacteria above background soil levels. Likewise, land application of biosolids did not significantly increase the concentration of endotoxin in soil. This study determined and established a baseline understanding of the overall effect that land application of biosolids had on the land-applied field with respect to antibiotic-resistant bacterial and endotoxin soil densities.  相似文献   
102.
103.
m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3. METTL3 is capable of self-interaction and likely provides the multivalency to drive condensation. Condensates in cells necessarily contain myriad components, each with partition coefficients that establish an entropic barrier that can regulate entry into the condensate. In this regard, we found that, in contrast to the constitutive binding of METTL14 to METTL3 in both the diffuse and the dense phase, WTAP only interacts with METTL3 in dense phase and thereby distinguishes METTL3/METTL14 single complexes in the dilute phase from METTL3/METTL14 multicomponent condensates. Finally, control over METTL3/METTL14 condensation is determined by its small molecule cofactor, S-adenosylmethionine (SAM), which regulates conformations of two gate loops, and some cancer-associated mutations near gate loops can impair METTL3 condensation. Therefore, the link between SAM binding and the control of writer complex phase state suggests that the regulation of its phase state is a potentially critical facet of its functional regulation.

Approximately one-fourth of eukaryotic mRNAs harbor at least one m6A-modified base, but how is this regulated? This study shows that cells can use liquid-liquid phase separation to regulate dynamic assembly of the mRNA m6A methyltransferase complex (METTL3/METTL14/WTAP), with stoichiometries that depend on condensate partitioning in a substrate binding-dependent manner.  相似文献   
104.
Immunization with radiation-attenuated sporozoites (RAS) can confer sterilizing protection against malaria, although the mechanisms behind this protection are incompletely understood. We performed a systems biology analysis of samples from the Immunization by Mosquito with Radiation Attenuated Sporozoites (IMRAS) trial, which comprised P. falciparum RAS-immunized (PfRAS), malaria-naive participants whose protection from malaria infection was subsequently assessed by controlled human malaria infection (CHMI). Blood samples collected after initial PfRAS immunization were analyzed to compare immune responses between protected and non-protected volunteers leveraging integrative analysis of whole blood RNA-seq, high parameter flow cytometry, and single cell CITEseq of PBMCs. This analysis revealed differences in early innate immune responses indicating divergent paths associated with protection. In particular, elevated levels of inflammatory responses early after the initial immunization were detrimental for the development of protective adaptive immunity. Specifically, non-classical monocytes and early type I interferon responses induced within 1 day of PfRAS vaccination correlated with impaired immunity. Non-protected individuals also showed an increase in Th2 polarized T cell responses whereas we observed a trend towards increased Th1 and T-bet+ CD8 T cell responses in protected individuals. Temporal differences in genes associated with natural killer cells suggest an important role in immune regulation by these cells. These findings give insight into the immune responses that confer protection against malaria and may guide further malaria vaccine development.Trial registration: ClinicalTrials.gov NCT01994525.  相似文献   
105.
Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of β-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease.  相似文献   
106.
Extreme weather events are predicted to increase as a result of climate change, yet amphibian responses to extreme disturbance events remain understudied, especially in the Neotropics. Recently, an unprecedented windstorm within a protected Costa Rican rainforest opened large light gaps in sites where we have studied behavioral responses of diurnal strawberry poison frogs (Oophaga pumilio) to ultraviolet radiation for nearly two decades. Previous studies demonstrate that O. pumilio selects and defends perches where ultraviolet radiation (UV‐B) is relatively low, likely because of the lethal and sublethal effects of UV‐B. In this natural experiment, we quantified disturbance to O. pumilio habitat, surveyed for the presence of O. pumilio in both high‐disturbance and low‐disturbance areas of the forest, and assessed UV‐B levels and perch selection behavior in both disturbance levels. Fewer frogs were detected in high‐disturbance habitat than in low‐disturbance habitat. In general, frogs were found vocalizing at perches in both disturbance levels, and in both cases, in significantly lower UV‐B levels relative to ambient adjacent surroundings. However, frogs at perches in high‐disturbance areas were exposed to UV‐B levels nearly 10 times greater than males at perches in low‐disturbance areas. Thus, behavioral avoidance of UV‐B may not reduce the risks associated with elevated exposure under these novel conditions, and similarly, if future climate and human‐driven land‐use change lead to sustained analogous environments.  相似文献   
107.
108.
The hairpin ribozyme in its natural context consists of two loops in RNA duplexes that are connected as arms of a four-way helical junction. Magnesium ions induce folding into the active conformation in which the two loops are in proximity. In this study, we have investigated nucleotides that are important to this folding process. We have analyzed the folding in terms of the cooperativity and apparent affinity for magnesium ions as a function of changes in base sequence and functional groups, using fluorescence resonance energy transfer. Our results suggest that the interaction between the loops is the sum of a number of component interactions. Some sequence variants such as A10U, G+1A, and C25U exhibit loss of cooperativity and reduced affinity of apparent magnesium ion binding. These variants are also very impaired in ribozyme cleavage activity. Nucleotides A10, G+1, and C25 thus appear to be essential in creating the conformational environment necessary for ion binding. The double variant G+1A/C25U exhibits a marked recovery of both folding and catalytic activity compared to either individual variant, consistent with the proposal of a triple-base interaction among A9, G+1, and C25 [Pinard, R., Lambert, D., Walter, N. G., Heckman, J. E., Major, F., and Burke, J. M. (1999) Biochemistry 38, 16035-16039]. However, substitution of A9 leads to relatively small changes in folding properties and cleavage activity, and the double variant G+1DAP/C25U (DAP is 2,6-diaminopurine), which could form an isosteric triple-base interaction, exhibits folding and cleavage activities that are both very impaired compared to those of the natural sequence. Our results indicate an important role for a Watson--Crick base pair between G+1 and C25; this may be buttressed by an interaction with A9, but the loss of this has less significant consequences for folding. 2'-Deoxyribose substitution leads to folding with reduced magnesium ion affinity in the following order: unmodified RNA > dA9 > dA10 > dC25 approximately dA10 plus dC25. The results are interpreted in terms of an interaction between the ribose ring of C25 and the ribose and base of A10, in agreement with the proposal of Ryder and Strobel [Ryder, S. P., and Strobel, S. A. (1999) J. Mol. Biol. 291, 295-311]. In general, there is a correlation between the ability to undergo ion-induced folding and the rate of ribozyme cleavage. An exception to this is provided by G8, for which substitution with uridine leads to severe impairment of cleavage but folding characteristics that are virtually unaltered from those of the natural species. This is consistent with a direct role for the nucleobase of G8 in the chemistry of cleavage.  相似文献   
109.
110.
DNA gyrase catalyses DNA supercoiling by passing one segment of DNA (the T segment) through another (the G segment) in a reaction coupled to the binding and hydrolysis of ATP. The N-terminal domains of the gyrase B dimer constitute an ATP-operated clamp that is proposed to capture the T segment during the DNA supercoiling reaction. We have locked this clamp in the closed conformation using the non-hydrolysable ATP analogue ADPNP (5'-adenylyl beta,gamma-imidodiphosphate). The clamp-locked enzyme is able to bind and cleave DNA, albeit at a reduced level. Although the locked enzyme is not capable of carrying out DNA supercoiling, it can catalyse limited DNA relaxation, consistent with the ability to complete one strand passage event per enzyme molecule via entry of the T segment through the exit gate of the enzyme. The DNA-protein complex of the clamp-locked enzyme has a conformation that differs from the normal positively wrapped conformation of the gyrase-DNA complex. These experiments confirm the role of the ATP-operated clamp in the strand-passage reactions of gyrase and suggest a model for the interaction of DNA with gyrase in which a conformation with the T segment in equilibrium across the DNA gate can be achieved via T-segment entry through the ATP-operated clamp or through the exit gate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号