首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1510篇
  免费   188篇
  2022年   18篇
  2021年   32篇
  2020年   16篇
  2019年   26篇
  2018年   37篇
  2017年   28篇
  2016年   36篇
  2015年   47篇
  2014年   56篇
  2013年   81篇
  2012年   67篇
  2011年   75篇
  2010年   49篇
  2009年   55篇
  2008年   56篇
  2007年   75篇
  2006年   60篇
  2005年   56篇
  2004年   41篇
  2003年   36篇
  2002年   55篇
  2001年   30篇
  2000年   32篇
  1999年   29篇
  1998年   24篇
  1997年   19篇
  1996年   12篇
  1995年   16篇
  1994年   17篇
  1993年   13篇
  1992年   25篇
  1991年   23篇
  1990年   27篇
  1988年   22篇
  1987年   17篇
  1986年   16篇
  1985年   15篇
  1984年   13篇
  1983年   12篇
  1982年   14篇
  1980年   14篇
  1979年   14篇
  1978年   21篇
  1977年   12篇
  1976年   15篇
  1974年   14篇
  1972年   11篇
  1971年   19篇
  1970年   14篇
  1968年   15篇
排序方式: 共有1698条查询结果,搜索用时 15 毫秒
91.
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.  相似文献   
92.
Bark beetle populations have drastically increased in magnitude over the last several decades leading to the largest-scale tree mortality ever recorded from an insect infestation on multiple wooded continents. When the trees die, the loss of canopy and changes in water and nutrient uptake lead to observable changes in hydrology and biogeochemical cycling. This review aims to synthesize the current research on the effects of the bark beetle epidemic on nutrient cycling and water quality while integrating recent and relevant hydrological findings, along with suggesting necessary future research avenues. Studies generally agree that snow depth will increase in infested forests, though the magnitude is uncertain. Changes in evapotranspiration are more variable as decreased transpiration from tree death may be offset by increased understory evapotranspiration and ground evaporation. As a result of such competing hydrologic processes that can affect watershed biogeochemistry along with the inherent variability of natural watershed characteristics, water quality changes related to beetle infestation are difficult to predict and may be regionally distinct. However, tree-scale changes to soil–water chemistry (N, P, DOC and base cation concentrations and composition) are being observed in association with beetle outbreaks which ultimately could lead to larger-scale responses. The different temporal and spatial patterns of bark beetle infestations due to different beetle and tree species lead to inconsistent infestation impacts. Climatic variations and large-scale watershed responses provide a further challenge for predictions due to spatial heterogeneities within a single watershed; conflicting reports from different regions suggest that hydrologic and water quality impacts of the beetle on watersheds cannot be generalized. Research regarding the subsurface water and chemical flow-paths and residence times after a bark beetle epidemic is lacking and needs to be rigorously addressed to best predict watershed or regional-scale changes to soil–water, groundwater, and stream water chemistry.  相似文献   
93.
94.
Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input.  相似文献   
95.
Advanced hemodynamic monitoring is a critical component of treatment in clinical situations where aggressive yet guided hemodynamic interventions are required in order to stabilize the patient and optimize outcomes. While there are many tools at a physician’s disposal to monitor patients in a hospital setting, the reality is that none of these tools allow hi-fidelity assessment or continuous monitoring towards early detection of hemodynamic instability. We present an advanced automated analytical system which would act as a continuous monitoring and early warning mechanism that can indicate pending decompensation before traditional metrics can identify any clinical abnormality. This system computes novel features or bio-markers from both heart rate variability (HRV) as well as the morphology of the electrocardiogram (ECG). To compare their effectiveness, these features are compared with the standard HRV based bio-markers which are commonly used for hemodynamic assessment. This study utilized a unique database containing ECG waveforms from healthy volunteer subjects who underwent simulated hypovolemia under controlled experimental settings. A support vector machine was utilized to develop a model which predicts the stability or instability of the subjects. Results showed that the proposed novel set of features outperforms the traditional HRV features in predicting hemodynamic instability.  相似文献   
96.

Purpose

New onset diabetes after transplantation (NODAT) is a serious complication following solid organ transplantation. There is a genetic contribution to NODAT and we have conducted comprehensive meta-analysis of available genetic data in kidney transplant populations.

Methods

Relevant articles investigating the association between genetic markers and NODAT were identified by searching PubMed, Web of Science and Google Scholar. SNPs described in a minimum of three studies were included for analysis using a random effects model. The association between identified variants and NODAT was calculated at the per-study level to generate overall significance values and effect sizes.

Results

Searching the literature returned 4,147 citations. Within the 36 eligible articles identified, 18 genetic variants from 12 genes were considered for analysis. Of these, three were significantly associated with NODAT by meta-analysis at the 5% level of significance; CDKAL1 rs10946398 p = 0.006 OR = 1.43, 95% CI = 1.11–1.85 (n = 696 individuals), KCNQ1 rs2237892 p = 0.007 OR = 1.43, 95% CI = 1.10–1.86 (n = 1,270 individuals), and TCF7L2 rs7903146 p = 0.01 OR = 1.41, 95% CI = 1.07–1.85 (n = 2,967 individuals).

Conclusion

Evaluating cumulative evidence for SNPs associated with NODAT in kidney transplant recipients has revealed three SNPs associated with NODAT. An adequately powered, dense genome-wide association study will provide more information using a carefully defined NODAT phenotype.  相似文献   
97.
Reconstructing ecological niche shifts during ontogeny in extinct animals with no living analogues is difficult without exceptional fossil collections. Here we demonstrate how a previously identified ontogenetic shift in the size and shape of the dentition in the early Toarcian ichthyosaur Stenopterygius quadriscissus accurately predicts a particular dietary shift. The smallest S. quadriscissus fed on small, burst‐swimming fishes, with a steady shift towards faster moving fish and cephalopods with increasing body size. Larger adult specimens appear to have been completely reliant on cephalopods, with fish completely absent from gut contents shortly after onset of sexual maturity. This is consistent with a previously proposed ontogenetic niche shift based on tooth shape and body size, corroborating the idea that dental ontogeny may be a useful predictor of dietary shifts in marine reptiles. Applying the theoretical framework used here to other extinct species will improve the resolution of palaeoecological reconstructions, where appropriate sample sizes exist.  相似文献   
98.
Bromus tectorum can transform ecosystems causing negative impacts on the ecological and economic values of sagebrush steppe of the western USA. Although our knowledge of the drivers of the regional distribution of B. tectorum has improved, we have yet to determine the relative importance of climate and local factors causing B. tectorum abundance and impact. To address this, we sampled 555 sites distributed geographically and ecologically throughout the sagebrush steppe. We recorded the canopy cover of B. tectorum, as well as local substrate and vegetation characteristics. Boosted regression tree modeling revealed that climate strongly limits the transformative ability of B. tectorum to a portion of the sagebrush steppe with dry summers (that is, July precipitation <10 mm and the driest annual quarter associated with a mean temperature >15°C) and low native grass canopy cover. This portion includes the Bonneville, Columbia, Lahontan, and lower Snake River basins. These areas are likely to require extreme efforts to reverse B. tectorum transformation. Our predictions, using future climate conditions, suggest that the transformative ability of B. tectorum may not expand geographically and could remain within the same climatically suitable basins. We found B. tectorum in locally disturbed areas within or adjacent to all of our sample sites, but not necessarily within sagebrush steppe vegetation. Conversion of the sagebrush steppe by B. tectorum, therefore, is more likely to occur outside the confines of its current climatically optimal region because of site-specific disturbances, including invasive species control efforts and sagebrush steppe mismanagement, rather than climate change.  相似文献   
99.
Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk. Ultimately, macroecology is establishing a framework to more accurately predict global patterns of infectious disease distribution and emergence.  相似文献   
100.
The One Health initiative is a global effort fostering interdisciplinary collaborations to address challenges in human, animal, and environmental health. While One Health has received considerable press, its benefits remain unclear because its effects have not been quantitatively described. We systematically surveyed the published literature and used social network analysis to measure interdisciplinarity in One Health studies constructing dynamic pathogen transmission models. The number of publications fulfilling our search criteria increased by 14.6% per year, which is faster than growth rates for life sciences as a whole and for most biology subdisciplines. Surveyed publications clustered into three communities: one used by ecologists, one used by veterinarians, and a third diverse-authorship community used by population biologists, mathematicians, epidemiologists, and experts in human health. Overlap between these communities increased through time in terms of author number, diversity of co-author affiliations, and diversity of citations. However, communities continue to differ in the systems studied, questions asked, and methods employed. While the infectious disease research community has made significant progress toward integrating its participating disciplines, some segregation—especially along the veterinary/ecological research interface—remains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号