首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   103篇
  2023年   15篇
  2022年   20篇
  2021年   47篇
  2020年   21篇
  2019年   26篇
  2018年   29篇
  2017年   25篇
  2016年   36篇
  2015年   77篇
  2014年   67篇
  2013年   76篇
  2012年   99篇
  2011年   75篇
  2010年   49篇
  2009年   53篇
  2008年   49篇
  2007年   53篇
  2006年   41篇
  2005年   21篇
  2004年   36篇
  2003年   34篇
  2002年   27篇
  2001年   12篇
  2000年   16篇
  1999年   13篇
  1998年   13篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1993年   5篇
  1992年   12篇
  1991年   10篇
  1990年   8篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1982年   5篇
  1981年   3篇
  1977年   3篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
  1968年   6篇
  1967年   3篇
  1966年   3篇
  1911年   3篇
排序方式: 共有1203条查询结果,搜索用时 31 毫秒
981.
Small cell lung cancer (SCLC) is distinguished by aggressive growth, early dissemination and a poor prognosis at advanced stage. The remarkably high count of circulating tumor cells (CTCs) of SCLC allowed for the establishment of permanent CTC cultures at our institution for the first time. CTCs are assumed to have characteristics of cancer stem cells (CSCs) and an epithelial-mesenchymal transition (EMT) phenotype, but extravasation of tumors at distal sites is marked by epithelial features. Two SCLC CTC cell lines, namely BHGc7 and BHGc10, as well as SCLC cell lines derived from primary tumors and metastases were analyzed for the expression of pluripotent stem cell markers and growth factors. Expression of E-cadherin and β-Catenin were determined by flow cytometry. Stem cell-associated markers SOX17, α-fetoprotein, OCT-3/4, KDR, Otx2, GATA-4, Nanog, HCG, TP63 and Goosecoid were not expressed in the 2 CTC lines. In contrast, high expression was found for HNF-3β/FOXA2, SOX2, PDX-1/IPF1 and E-cadherin. E-cadherin expression was restricted to the 2 CTCs and 2 cell lines derived from pleural effusion (SCLC26A) and bone metastases (NCI-H526), respectively. Thus, these SCLC CTCs established from extended disease SCLC patients lack expression of stem cell markers which suppress the epithelial phenotype. Instead they express high levels of E-cadherin consistent with a mesenchymal-epithelial transition (MET or EMrT) and form large tumorospheres possibly in response to the selection pressure of first-line chemotherapy. HNF-3β/FOXA2 and PDX-1/IPF1 expression seem to be related to growth factor dependence on insulin/IGF-1 receptors and IGF-binding proteins.  相似文献   
982.
983.
Tremmel D  Duarte M  Videira A  Tropschug M 《FEBS letters》2007,581(10):2036-2040
FKBP22 is a dimeric protein in the lumen of the endoplasmic reticulum, which exhibits a chaperone as well as a PPIase activity. It binds via its FK506 binding protein (FKBP) domain directly to the Hsp70 chaperone BiP that stimulates the chaperone activity of FKBP22. Here we demonstrate additionally the association of FKBP22 with the molecular chaperones and folding catalysts Grp170, alpha-subunit of glucosidase II, PDI, ERp38, and CyP23. These proteins are associated with FKBP22 in at least two protein complexes. Furthermore, we report an essential role for FKBP22 in the development of microconidiophores in Neurospora crassa.  相似文献   
984.
We present a comprehensive analysis of carbohydrate uptake systems of the soil bacterium Mycobacterium smegmatis and the human pathogen Mycobacterium tuberculosis. Our results show that M. smegmatis has 28 putative carbohydrate transporters. The majority of sugar transport systems (19/28) in M. smegmatis belong to the ATP-binding cassette (ABC) transporter family. In contrast to previous reports, we identified genes encoding all components of the phosphotransferase system (PTS), including permeases for fructose, glucose, and dihydroxyacetone, in M. smegmatis. It is anticipated that the PTS of M. smegmatis plays an important role in the global control of carbon metabolism similar to those of other bacteria. M. smegmatis further possesses one putative glycerol facilitator of the major intrinsic protein family, four sugar permeases of the major facilitator superfamily, one of which was assigned as a glucose transporter, and one galactose permease of the sodium solute superfamily. Our predictions were validated by gene expression, growth, and sugar transport analyses. Strikingly, we detected only five sugar permeases in the slow-growing species M. tuberculosis, two of which occur in M. smegmatis. Genes for a PTS are missing in M. tuberculosis. Our analysis thus brings the diversity of carbohydrate uptake systems of fast- and a slow-growing mycobacteria to light, which reflects the lifestyles of M. smegmatis and M. tuberculosis in their natural habitats, the soil and the human body, respectively.  相似文献   
985.
The aspartyl protease beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid beta (Abeta) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Abeta-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Abeta generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Abeta generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Abeta levels in young mice, it nonetheless resulted in a dramatic reduction in Abeta plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Abeta levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Abeta levels lead to dramatic inhibition of Abeta-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD.  相似文献   
986.
Fungal succession in rotting wood shows a surprising abundance of ectomycorrhizal (EM) fungi during the late decomposition stages. To better understand the links between EM fungi and saprotrophic fungi, we investigated the potential capacities of the EM fungus Paxillus involutus to mobilize nutrients from necromass of Postia placenta, a wood rot fungus, and to transfer these elements to its host tree. In this aim, we used pure cultures of P. involutus in the presence of labelled Postia necromass (15N/13C) as nutrient source, and a monoxenic mycorrhized pine experiment composed of labelled Postia necromass and P. involutus culture in interaction with pine seedlings. The isotopic labelling was measured in both experiments. In pure culture, P. involutus was able to mobilize N, but C as well, from the Postia necromass. In the symbiotic interaction experiment, we measured high 15N enrichments in all plant and fungal compartments. Interestingly, 13C remains mainly in the mycelium and mycorrhizas, demonstrating that the EM fungus transferred essentially N from the necromass to the tree. These observations reveal that fungal organic matter could represent a significant N source for EM fungi and trees, but also a C source for mycorrhizal fungi, including in symbiotic lifestyle.  相似文献   
987.
Class I genes of the Peromyscus leucopus major histocompatibility complex (MhcPele) were examined by Southern blot hybridization, genomic cloning, and DNA sequencing. At least three distinct subtypes of Pele class I genes were discerned, which we have designated Pele-A, B, and C. The nucleotide sequences of exon 5-containing regions (encoding the transmembrane domain) suggested that Pele-A genes are homologs of mouse H-2K, D, L, and Q genes and that Pele-B genes correspond to mouse Tla genes. The Pele-C genes appeared similar to mouse M1 genes. The number of unique genes in each subtype cloned from an individual P. leucopus were 20 for Pele-A, 13 for Pele-B, and 2 for Pele-C. Three genomic clones showed cross-hybridization to both Pele-A and Pele-B gene-specific probes. Six genomic clones remained unclassified as they did not cross-hybridize to exon 5-containing probes from Pele-A, B, or C genes. The homology between the transmembrane domains of Pele class I gene subtypes was found to be similar to that observed between the transmembrane domains of H-2 subtypes (or groups). Interspecific similarity of exon 5 was found to be 81%–88% between Pele class I genes and their H-2 counterparts.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M33983-5.  相似文献   
988.
989.
990.
Marsupials represent only 6% of all living mammals. Marsupialia and Placentalia are distinguished mainly by their modes of reproduction. In particular, the differences in the stage of development of the neonates may be one explanation for the divergent evolutionary success. In this respect one important question is whether the survivability of the neonate depends on the degree of maturation of the respiratory system relative to the metabolic capacity at the time of birth. Therefore, this review highlights the differences in lung morphology and metabolic development of extant Marsupialia and Placentalia. The Marsupial neonate is born with a low birth weight and is highly immature. The neonatal lung is characterized by large terminal sacs, a poorly developed bronchial system and late formation of alveoli. Marsupialia have a low metabolic rate at birth and attain adult metabolic rate and thermoregulatory capacity late in postnatal development. In contrast, the eutherian neonate is born with a relative high birth weight and is always more mature than marsupial neonates. The neonatal lung has small terminal sacs, the bronchial system is well developed and the formation of alveoli begins few days after birth. Placentalia have a high metabolic rate at birth and attain adult metabolic rate and thermoregulatory capacity early in postnatal development. The differences in the developmental degree of the newborn lung between Marsupialia and Placentalia have consequences for their metabolic and thermoregulatory capacity. These differences could be advantageous for Placentalia in the changing environments in which they evolved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号