首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   103篇
  2023年   15篇
  2022年   20篇
  2021年   47篇
  2020年   21篇
  2019年   26篇
  2018年   29篇
  2017年   25篇
  2016年   36篇
  2015年   77篇
  2014年   67篇
  2013年   76篇
  2012年   99篇
  2011年   75篇
  2010年   49篇
  2009年   53篇
  2008年   49篇
  2007年   53篇
  2006年   41篇
  2005年   21篇
  2004年   36篇
  2003年   34篇
  2002年   27篇
  2001年   12篇
  2000年   16篇
  1999年   13篇
  1998年   13篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1993年   5篇
  1992年   12篇
  1991年   10篇
  1990年   8篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1982年   5篇
  1981年   3篇
  1977年   3篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
  1968年   6篇
  1967年   3篇
  1966年   3篇
  1911年   3篇
排序方式: 共有1203条查询结果,搜索用时 31 毫秒
941.
Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35–150 individuals ha–1 mth–1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10–20 and 20–30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15–30 cm decreased and the C/N ratio at 5–10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.  相似文献   
942.
According to previous investigations, CD14 is suggested to play a pivotal role in initiating and perpetuating the pro-inflammatory response during sepsis. A functional polymorphism within the CD14 gene, rs2569190, has been shown to impact the pro-inflammatory response upon stimulation with lipopolysaccharide, a central mediator of inflammation in sepsis. In this study, we hypothesized that the strong pro-inflammatory response induced by the TT genotype of CD14 rs2569190 may have a beneficial effect on survival (30-day) in patients with sepsis. A total of 417 adult patients with sepsis (and of western European descent) were enrolled into this observational study. Blood samples were collected for rs2569190 genotyping. Patients were followed over the course of their stay in the ICU, and the 30-day mortality risk was recorded as the primary outcome parameter. Sepsis-related organ failure assessment (SOFA) scores were quantified at sepsis onset and throughout the observational period to monitor organ failure as a secondary variable. Moreover, organ support-free days were evaluated as a secondary outcome parameter. TT-homozygous patients were compared to C-allele carriers. Kaplan-Meier survival analysis revealed a higher 30-day mortality risk among C-allele carriers compared with T homozygotes (p = 0.0261). To exclude the effect of potential confounders (age, gender, BMI and type of infection) and covariates that varied at baseline with a p-value < 0.2 (e.g., comorbidities), we performed multivariate Cox regression analysis to examine the survival time. The CD14 rs2569190 C allele remained a significant covariate for the 30-day mortality risk in the multivariate analysis (hazard ratio, 2.11; 95% CI, 1.08-4.12; p = 0.0282). The 30-day mortality rate among C allele carriers was 23%, whereas the T homozygotes had a mortality rate of 13%. Additionally, an analysis of organ-specific SOFA scores revealed a significantly higher SOFA-Central nervous system score among patients carrying the C allele compared with T-homozygous patients (1.9±1.1 and 1.6±1.0, respectively; p = 0.0311). In conclusion, CD14 rs2569190 may act as a prognostic variable for the short-term outcome (30-day survival) in patients with sepsis.  相似文献   
943.
The combination of a magnesium anode with a sulfur cathode is one of the most promising electrochemical couples because of its advantages of good safety, low cost, and a high theoretical energy density. However, magnesium sulfur batteries are still in a very early stage of research and development, and the discovery of suitable electrolytes is the key challenge for further improvement. Here, a new preparation method for non‐nucleophilic electrolyte solutions using a two‐step reaction in one‐pot is presented, which provides a feasible way to optimize the physiochemical properties of the electrolyte for the application in magnesium sulfur batteries. The first use of modified electrolytes in glymes and binary solvents of glyme and ionic liquid shows beneficial effects on the performance of magnesium sulfur batteries. New insights into the reaction mechanism of electrochemical conversion between magnesium and sulfur are also investigated.  相似文献   
944.
Scavenging is a common feeding behavior by many species that plays an important role in ecosystem stability and function while also providing ecosystem services. Despite its importance, facultative scavenging on large animal carcasses has generally been overlooked in Asian temperate forest ecosystems. The aim of this study was to determine the composition and feeding behavior of the facultative scavenger guild as it relates to sika deer (Cervus nippon) carcasses in Japanese forests. There are no obligate scavengers or large predators that kill adult ungulates, but humans fill the role of large predators by culling deer for population management. We documented nine vertebrate species scavenging on deer carcasses and found that mammals were more frequent scavengers than birds and also fed for longer durations. This result suggests that there is a facultative scavenger guild composed mainly of mammals in our forest ecosystem and that carcass utilization by birds was restricted to only forest species. Raccoon dogs (Nyctereutes procyonoides) and Asian black bears (Ursus thibetanus) were the most frequent scavenger species and also fed for longer durations than other scavengers. There were significant seasonal differences in scavenging by Asian black bear, Japanese marten (Martes melampus), and mountain hawk‐eagle (Nisaetus nipalensis), suggesting the availability of other food resources may alter facultative scavenging by each species. Our results support that scavenging is widespread in this system and likely has important functions including building links in the food web.  相似文献   
945.
ABSTRACT

During (macro)autophagy, cells form transient organelles, termed autophagosomes, to target a broad spectrum of substrates for degradation critical to cellular and organismal health. Driven by rapid membrane assembly, an initially small vesicle (phagophore) elongates into a large cup-shaped structure to engulf substrates within a few minutes in a double-membrane autophagosome. In particular, how autophagic membranes expand has been a longstanding question. Here, we summarize our recent work that delineates a pathway that drives phagophore expansion by localized de novo phospholipid synthesis. Specifically, we found that the conserved acyl-CoA synthetase Faa1 localizes to nucleated phagophores to locally activate fatty acids for de novo phospholipid synthesis in the neighboring ER. These newly synthesized phospholipids are then preferentially incorporated into autophagic membranes and drive the expansion of the phagophore into a functional autophagosome. In summary, our work uncovers molecular principles of how cells coordinate phospholipid synthesis and flux with autophagic membrane formation during autophagy.

Abbreviations: ACS: acyl-CoA synthestases; CoA: coenzyme A; ER: endoplasmic reticulum  相似文献   
946.
Some temperate tree species are associated with very low soil nitrification rates, with important implications for forest N dynamics, presumably due to their potential for biological nitrification inhibition (BNI). However, evidence for BNI in forest ecosystems is scarce so far and the nitrifier groups controlled by BNI-tree species have not been identified. Here, we evaluated how some tree species can control soil nitrification by providing direct evidence of BNI and identifying the nitrifier group(s) affected. First, by comparing 28 year-old monocultures of several tree species, we showed that nitrification rates correlated strongly with the abundance of the nitrite oxidizers Nitrobacter (50- to 1000-fold changes between tree monocultures) and only weakly with the abundance of ammonia oxidizing archaea (AOA). Second, using reciprocal transplantation of soil cores between low and high nitrification stands, we demonstrated that nitrification changed 16 months after transplantation and was correlated with changes in the abundance of Nitrobacter, not AOA. Third, extracts of litter or soil collected from the low nitrification stands of Picea abies and Abies nordmanniana inhibited the growth of Nitrobacter hamburgensis X14. Our results provide for the first time direct evidence of BNI by tree species directly affecting the abundance of Nitrobacter.  相似文献   
947.
The enzyme adenylate kinase (ADK) features two substrate binding domains that undergo large-scale motions during catalysis. In the apo state, the enzyme preferentially adopts a globally open state with accessible binding sites. Binding of two substrate molecules (AMP + ATP or ADP + ADP) results in a closed domain conformation, allowing efficient phosphoryl-transfer catalysis. We employed molecular dynamics simulations to systematically investigate how the individual domain motions are modulated by the binding of substrates. Two-dimensional free-energy landscapes were calculated along the opening of the two flexible lid domains for apo and holo ADK as well as for all single natural substrates bound to one of the two binding sites of ADK. The simulations reveal a strong dependence of the conformational ensembles on type and binding position of the bound substrates and a nonsymmetric behavior of the lid domains. Altogether, the ensembles suggest that, upon initial substrate binding to the corresponding lid site, the opposing lid is maintained open and accessible for subsequent substrate binding. In contrast, ATP binding to the AMP-lid induces global domain closing, preventing further substrate binding to the ATP-lid site. This might constitute a mechanism by which the enzyme avoids the formation of a stable but enzymatically unproductive state.  相似文献   
948.
Background aimsTransplantation of allogeneic hematopoietic stem cells (HSC) within the framework of hematologic oncology or inherited diseases may be associated with complications such as engraftment failure and long-term pancytopenia. HSC engraftment can be improved, for example by co-transplantation with mesenchymal stem cells (MSC). Recently, a new multipotent MSC line from umbilical cord blood, unrestricted somatic stem cells (USSC), has been described. It was demonstrated that USSC significantly support proliferation of HSC in an in vitro feeder layer assay.MethodsA NOD/SCID mouse model was used to assess the effect of USSC on co-transplanted CD34+ cells and look for the fate of transplanted USSC. The migration potential of USSC was studied in a Boyden chamber migration assay and in vivo. Quantitative real-time polymerase chain reaction (qRT-PCR) for CXCR4, CD44, LFA1, CD62L, VLA4, RAC2, VLA5A and RAC1 were performed. NMR1 nu/nu mice were used for a tumorigenicity test.ResultsAfter 4 weeks, homing of human cells (CD45+) to the bone marrow of NOD/SCID mice was significantly increased in mice co-transplanted with CD34+ cells and USSC (median 30.9%, range 7–50%) compared with the CD34+ cell-only control group (median 5.9%, range 3–10%; P = 0.004). Homing of USSC could not be shown in the bone marrow. A cell–cell contact was not required for the graft enhancing effect of USSC. An in vivo tumorigenicity assay showed no tumorigenic potential of USSC.ConclusionsThis pre-clinical study clearly shows that USSC have an enhancing effect on engraftment of human CD34+ cells. USSC are a safe graft adjunct.  相似文献   
949.

Introduction  

The goal of this study was to compare the efficacy in terms of Health Assessment Questionnaire change from baseline (HAQ CFB), 50% improvement in American College of Rheumatology criterion (ACR-50) and Disease Activity Score in 28 joints (DAS28) defined remission (< 2.6) between abatacept and other biologic disease modifying anti-rheumatic drugs (DMARDs) in patients with rheumatoid arthritis (RA) who have inadequate response to methotrexate (MTX-IR).  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号