首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   66篇
  761篇
  2023年   16篇
  2022年   22篇
  2021年   46篇
  2020年   19篇
  2019年   23篇
  2018年   24篇
  2017年   22篇
  2016年   30篇
  2015年   61篇
  2014年   54篇
  2013年   47篇
  2012年   71篇
  2011年   50篇
  2010年   27篇
  2009年   31篇
  2008年   28篇
  2007年   28篇
  2006年   24篇
  2005年   12篇
  2004年   19篇
  2003年   18篇
  2002年   16篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1992年   3篇
  1980年   2篇
  1976年   2篇
  1968年   5篇
  1967年   2篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
  1949年   1篇
  1948年   1篇
  1939年   1篇
  1936年   1篇
  1934年   1篇
  1933年   1篇
  1932年   2篇
  1929年   2篇
  1928年   1篇
  1926年   1篇
  1924年   1篇
  1922年   1篇
  1911年   3篇
排序方式: 共有761条查询结果,搜索用时 0 毫秒
691.
While a unique origin of the euarthropods is well established, relationships between the four euarthropod classes—chelicerates, myriapods, crustaceans and hexapods—are less clear. Unsolved questions include the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relationship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata). Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding genes needs corroboration from independent data to define the relationships among major nodes in the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phylogenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods), suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject to tree-reconstruction artefacts.  相似文献   
692.
The nonhemolytic enterotoxin (Nhe) is one of the two three-component enterotoxins which are responsible for diarrheal food poisoning syndrome caused by Bacillus cereus. To facilitate the detection of this toxin, consisting of the subunits NheA, NheB, and NheC, a complete set of high-affinity antibodies against each of the three components was established and characterized. A rabbit antiserum specific for the C-terminal part (15 amino acids) of NheC was produced using a respective synthetic peptide coupled to a protein carrier for immunization. Using purified B. cereus exoprotein preparations as immunogens, one monoclonal antibody against NheA and several antibodies against NheB were obtained. No cross-reactivity with other proteins produced by different strains of B. cereus was observed. Antibodies against the NheB component were able to neutralize the cytotoxic activity (up to 98%) of Nhe. Based on indirect enzyme immunoassays, the antibodies developed in this study were successfully used in the characterization of the enterotoxic activity of several B. cereus strains. For the first time, it could be shown that strains carrying the nhe genes usually express the complete set of the three components, including NheC. However, the amount of toxin produced varies considerably between the different strains.  相似文献   
693.
Supplementation with Trichostatin A (TSA) has been described as the method of choice for differentiating the RGC-5 cell line into cells with neuronal properties. However, TSA is known to induce apoptosis. We therefore investigated whether TSA at the recommended concentration for differentiation (500 nM) and at three additional concentrations (40, 150 and 2000 nM) induces apoptosis or cell death in the RGC-5 cell line. Morphological changes of the RGC-5 cells occurred after 24 and 48 hours (h) of treatment with 500 and 2000 nM TSA. Differentiation of RGC-5 cell began at 150 nM. A decrease in the cell count was observed from 150 nM TSA onwards compared to controls. Five hundred nanomolar of TSA reduced the amount of cells to 51% (p<0.005) after 24h and to 24% (p<0.005) after 48 h compared to controls on crystal violet staining. At 500 nM TSA a massive induction of apoptosis after 24 and 48 h was noted. Supplementation of 500 nM TSA increased caspase 3/7 activity 5.0-fold (p<0.005). Furthermore, 27× more TUNEL-positive cells were found and the cleaved caspase 3/caspase 3 ratio was 1.8-fold (p<0.1) higher 24h after the addition of 500 nM TSA. The Bax/Bcl-2 ratio was 3.4-fold (p<0.05) higher after 48 h. Cell viability decreased to 70% (p<0.005) and to 35% (p<0.005) after 24 and 48 h, respectively. Moreover, 103× (p<0.05) more dead cells (via propidium iodide staining) were found after 48 h of treatment with 500 nM TSA. In conclusion, TSA induces cell death and apoptosis at the concentration recommended for differentiation. The induction of apoptosis occurred dose and time dependently and already at even lower concentrations of TSA which did not lead to differentiation induced apoptosis. Thus, studies with RGC-5 cells should not be performed within the first 48 h after supplementation with TSA.  相似文献   
694.
Genetics of the variability of normal and diseased brain structure largely remains to be elucidated. Expansions of certain trinucleotide repeats cause neurodegenerative disorders of which Huntington's disease constitutes the most common example. Here, we test the hypothesis that variation within the IT15 gene on chromosome 4, whose expansion causes Huntington's disease, influences normal human brain structure. In 278 normal subjects, we determined CAG repeat length within the IT15 gene on chromosome 4 and analyzed high-resolution T1-weighted magnetic resonance images by the use of voxel-based morphometry. We found an increase of GM with increasing long CAG repeat and its interaction with age within the pallidum, which is involved in Huntington's disease. Our study demonstrates that a certain trinucleotide repeat influences normal brain structure in humans. This result may have important implications for the understanding of both the healthy and diseased brain.  相似文献   
695.

Purpose

The aim of the study was to investigate microstructural changes occurring in unilateral renal ischemia-reperfusion injury in a murine animal model using synchrotron radiation.

Material and Methods

The effects of renal ischemia-reperfusion were investigated in a murine animal model of unilateral ischemia. Kidney samples were harvested on day 18. Grating-Based Phase-Contrast Imaging (GB-PCI) of the paraffin-embedded kidney samples was performed at a Synchrotron Radiation Facility (beam energy of 19 keV). To obtain phase information, a two-grating Talbot interferometer was used applying the phase stepping technique. The imaging system provided an effective pixel size of 7.5 µm. The resulting attenuation and differential phase projections were tomographically reconstructed using filtered back-projection. Semi-automated segmentation and volumetry and correlation to histopathology were performed.

Results

GB-PCI provided good discrimination of the cortex, outer and inner medulla in non-ischemic control kidneys. Post-ischemic kidneys showed a reduced compartmental differentiation, particularly of the outer stripe of the outer medulla, which could not be differentiated from the inner stripe. Compared to the contralateral kidney, after ischemia a volume loss was detected, while the inner medulla mainly retained its volume (ratio 0.94). Post-ischemic kidneys exhibited severe tissue damage as evidenced by tubular atrophy and dilatation, moderate inflammatory infiltration, loss of brush borders and tubular protein cylinders.

Conclusion

In conclusion GB-PCI with synchrotron radiation allows for non-destructive microstructural assessment of parenchymal kidney disease and vessel architecture. If translation to lab-based approaches generates sufficient density resolution, and with a time-optimized image analysis protocol, GB-PCI may ultimately serve as a non-invasive, non-enhanced alternative for imaging of pathological changes of the kidney.  相似文献   
696.
Recently, we identified CyPBP37 of Neurospora crassa as a binding partner of cyclophilin41. CyPBP37 function had not yet been described, although orthologs in other organisms have been implicated in the biosynthesis of the thiazole moiety of thiamine (vitamin B1) and/or stress-related pathways. Here, CyPBP37 is characterized as an abundant cytosolic protein with a functional NAD-binding site. Saccharomyces cerevisiae mutants lacking Thi4p (the CyPBP37 ortholog) are auxotrophic for vitamin B1 (thiamine) but can grow in the presence of the thiazole moiety of thiamine, suggesting a role for Thi4p in the biosynthesis of thiazole. N.crassa CyPBP37 is able to functionally replace Thi4p in yeast thiazole synthesis. Cellular fractionation studies revealed that Thi4p is a cytosolic protein in S.cerevisiae, like its ortholog CyPBP37 in N.crassa. This implies that thiamine synthesis takes place in the cytosol of both organisms and not in the mitochondria, as suggested. The expression of CyPBP37 and Thi4p is repressed by thiamine but not by thiazole in the growth medium. In addition to its function in thiazole synthesis, CyPBP37 is a stress-inducible protein. N.crassa cyclophilin41 can chaperone the folding of CyPBP37, its own binding partner.  相似文献   
697.
Silencing hepatitis B virus (HBV) gene expression with exogenous activators of the RNA interference (RNAi) pathway has shown promise as a new mode of treating infection with the virus. However, optimizing efficacy, specificity, pharmacokinetics and stability of RNAi activators remains a priority before clinical application of this promising therapeutic approach is realised. Chemical modification of synthetic short interfering RNAs (siRNAs) provides the means to address these goals. This study aimed to assess the benefits of incorporating nucleotides with 2′-O-guanidinopropyl (GP) modifications into siRNAs that target HBV. Single GP residues were incorporated at nucleotide positions from 2 to 21 of the antisense strand of a previously characterised effective antiHBV siRNA. When tested in cultured cells, siRNAs with GP moieties at selected positions improved silencing efficacy. Stability of chemically modified siRNAs in 80% serum was moderately improved and better silencing effects were observed without evidence for toxicity or induction of an interferon response. Moreover, partially complementary target sequences were less susceptible to silencing by siRNAs with GP residues located in the seed region. Hydrodynamic co-injection of siRNAs with a replication-competent HBV plasmid resulted in highly effective knock down of markers of viral replication in mice. Evidence for improved efficacy, reduced off target effects and good silencing in vivo indicate that GP-modifications of siRNAs may be used to enhance their therapeutic utility.  相似文献   
698.
Seed release mechanisms, seed production, seed weights, and fatty acid composition are investigated for Loasaceae subfam. Loasoideae. A total of ca. 60 species are studied. Nearly all species have erect, xerochasious capsules which restrict the release of the (balistochorous and/or anemochorous) seeds to dry, windy conditions. Very few taxa have tardily dehiscent capsules that are dispersed as a unit (anemochoria, epizoochoria, Blumenbachia sect. Blumenbachia, Klaprothia mentzelioides) or one-seeded cypselas (anemochoria, Kissenia). Dehiscent, but non-xerochasious capsules are only found in Blumenbachia, and Blumenbachia sylvestis (B. sect. Angulatae) has seeds with good floating ability and may be occasionally hydrochorous. The seeds of all other Loasoideae taxa tested rapidly sink when placed in water. Seed weights range from less than 0.02 g per 1000 seeds (Huidobria, Presliophytum) to over 23 g per 1000 seeds (Loasa ser. Macrospermae), thus spanning 3 orders of magnitude. Seed weight seems to correlate to some degree with substrate and seeds are heavier in species from “deep substrates” such as gravel and leaf litter. Seed numbers per fruit range from 1 (Kissenia) to over 3000 (Presliophytum) and annual seed production of individual mature plants ranges from less than 100 (Kissenia) to over 4 ×106 (Presliophytum). Fatty acid composition of Loasoideae seeds is mostly of common fatty acids, but exact composition varies considerably between groups. Most taxa have high levels of poly-unsaturated fatty acids (over 40% in Caiophora and Nasa), very low levels (<2%) are only found in Presliophytum. Nasa is the only genus of Loasaceae which has γ-linolenic acid and stearidonic acid in its seeds (at levels of 3.5–10% and 2–8.5% respectively). There is no obvious connection between the degree of unsaturation of the seed oils and habitat.  相似文献   
699.
Human adenovirus (Ad) serotypes Ad3, Ad7, Ad11, and Ad14, as well as a recently emerged strain of Ad14 (Ad14p1), use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. Unlike Ad interaction with CAR and CD46, structural details for Ad binding to DSG2 are still elusive. Using an approach based on Escherichia coli expression libraries of random Ad3 and Ad14p1 fiber knob mutants, we identified amino acid residues that, when mutated individually, ablated or reduced Ad knob binding to DSG2. These residues formed three clusters inside one groove at the extreme distal end of the fiber knob. The Ad3 fiber knob mutant library was also used to identify variants with increased affinity to DSG2. We found a number of mutations within or near the EF loop of the Ad3 knob that resulted in affinities to DSG2 that were several orders of magnitude higher than those to the wild-type Ad3 knob. Crystal structure analysis of one of the mutants showed that the introduced mutations make the EF loop more flexible, which might facilitate the interaction with DSG2. Our findings have practical relevance for cancer therapy. We have recently reported that an Ad3 fiber knob-containing recombinant protein (JO-1) is able to trigger opening of junctions between epithelial cancer cells which, in turn, greatly improved the intratumoral penetration and efficacy of therapeutic agents (I. Beyer, et al., Clin. Cancer Res. 18:3340–3351, 2012; I. Beyer, et al., Cancer Res. 71:7080–7090, 2011). Here, we show that affinity-enhanced versions of JO-1 are therapeutically more potent than the parental protein in a series of cancer models.  相似文献   
700.
In ischemic stroke (IS) impairment of the blood–brain barrier (BBB) has an important role in the secondary deterioration of neurological function. BBB disruption is associated with ischemia-induced inflammation, brain edema formation, and hemorrhagic infarct transformation, but the underlying mechanisms are incompletely understood. Dysfunction of endothelial cells (EC) may play a central role in this process. Although neuronal NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome upregulation is an established trigger of inflammation in IS, the contribution of its expression in EC is unclear. We here used brain EC, exposed them to oxygen and glucose deprivation (OGD) in vitro, and analyzed their survival depending on inflammasome inhibition with the NLRP3-specific drug MCC950. During OGD, EC death could significantly be reduced when targeting NLRP3, concomitant with diminished endothelial NLRP3 expression. Furthermore, MCC950 led to reduced levels of Caspase 1 (p20) and activated Gasdermin D as markers for pyroptosis. Moreover, inflammasome inhibition reduced the secretion of pro-inflammatory chemokines, cytokines, and matrix metalloproteinase-9 (MMP9) in EC. In a translational approach, IS was induced in C57Bl/6 mice by 60 mins transient middle cerebral artery occlusion and 23 hours of reperfusion. Stroke volume, functional outcome, the BBB integrity, and—in good agreement with the in vitro results—MMP9 secretion as well as EC survival improved significantly in MCC950-treated mice. In conclusion, our results establish the NLRP3 inflammasome as a critical pathogenic effector of stroke-induced BBB disruption by activating inflammatory signaling cascades and pyroptosis in brain EC.Subject terms: Stroke, Preclinical research, Inflammasome  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号