首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   48篇
  760篇
  2024年   1篇
  2023年   10篇
  2022年   24篇
  2021年   39篇
  2020年   35篇
  2019年   26篇
  2018年   32篇
  2017年   18篇
  2016年   30篇
  2015年   60篇
  2014年   62篇
  2013年   70篇
  2012年   51篇
  2011年   54篇
  2010年   33篇
  2009年   36篇
  2008年   34篇
  2007年   28篇
  2006年   31篇
  2005年   17篇
  2004年   15篇
  2003年   7篇
  2002年   12篇
  2000年   3篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1971年   3篇
  1969年   2篇
  1967年   1篇
  1922年   1篇
  1914年   1篇
排序方式: 共有760条查询结果,搜索用时 15 毫秒
51.
Reaching device efficiencies that can rival those of polymer‐fullerene Bulk Heterojunction (BHJ) solar cells (>10%) remains challenging with the “All‐Small‐Molecule” (All‐SM) approach, in part because of (i) the morphological limitations that prevail in the absence of polymer and (ii) the difficulty to raise and balance out carrier mobilities across the active layer. In this report, the authors show that blends of the SM donor DR3TBDTT (DR3) and the nonfullerene SM acceptor O‐IDTBR are conducive to “All‐SM” BHJ solar cells with high open‐circuit voltages (VOC) >1.1 V and PCEs as high as 6.4% (avg. 6.1%) when the active layers are subjected to a post‐processing solvent vapor‐annealing (SVA) step with dimethyl disulfide (DMDS). Combining electron energy loss spectroscopy (EELS) analyses and systematic carrier recombination examinations, the authors show that SVA treatments with DMDS play a determining role in improving charge transport and reducing non‐geminate recombination for the DR3:O‐IDTBR system. Correlating the experimental results and device simulations, it is found that substantially higher BHJ solar cell efficiencies of >12% can be achieved if the IQE and carrier mobilities of the active layer are increased to >85% and >10?4 cm2 V?1 s?1, respectively, while suppressing the recombination rate constant k to <10?12 cm3 s?1.  相似文献   
52.
During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo‐mock community (33 arthropod taxa from 16 orders), and guano‐based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano‐based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one‐third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.  相似文献   
53.
54.
Dispersal is a key life‐history trait governing the response of individuals, populations and species to changing environmental conditions. In the context of global change, it is therefore essential to better understand the respective role of condition‐, phenotype‐ and genetic‐dependent drivers of dispersal behaviour. Although the importance of immune function and pathogen infestation in determining patterns of dispersal is increasingly recognised, no study to our knowledge has yet investigated the influence of immune gene variability on dispersal behaviour. Here, we filled this knowledge gap by assessing whether individual heterozygosity at five immune gene loci (one from the Major histocompatibility complex and four from encoding Toll‐like receptors) influences roe deer natal dispersal. We found that dispersal propensity was affected by immune gene diversity, suggesting potential pathogen‐mediated selection through over‐dominance. However, the direction of this effect differed between high and low quality individuals, suggesting that dispersal propensity is driven by two different mechanisms. In support of the condition‐dependent dispersal hypothesis, dispersal propensity increased with increasing body mass and, among high quality individuals only (standardized body mass > 18 kg), with increasing immune gene diversity. However, among poor quality individuals, we observed the opposite pattern such that dispersal propensity was higher for individuals with lower immune gene diversity. We suggest that these poor quality individuals expressed an emergency dispersal tactic in an attempt to escape a heavily infested environment associated with poor fitness prospects. Our results have potentially important consequences in terms of population genetics and demography, as well as host–pathogen evolution.  相似文献   
55.
Hepatitis C virus core protein is targeted to lipid droplets, which serve as intracellular storage organelles, by its C-terminal domain, termed D2. From circular dichroism and nuclear magnetic resonance analyses, we demonstrate that the major structural elements within D2 consist of two amphipathic alpha-helices (Helix I and Helix II) separated by a hydrophobic loop. Both helices require a hydrophobic environment for folding, indicating that lipid interactions contribute to their structural integrity. Mutational studies revealed that a combination of Helix I, the hydrophobic loop, and Helix II is essential for efficient lipid droplet association and pointed to an in-plane membrane interaction of the two helices at the phospholipid layer interface. Aside from lipid droplet association, membrane interaction of D2 is necessary for folding and stability of core following maturation at the endoplasmic reticulum membrane by signal peptide peptidase. These studies identify critical determinants within a targeting domain that enable trafficking and attachment of a viral protein to lipid droplets. They also serve as a unique model for elucidating the specificity of protein-lipid interactions between two membrane-bound organelles.  相似文献   
56.

Background  

Macrostomum lignano is a small free-living flatworm capable of regenerating all body parts posterior of the pharynx and anterior to the brain. We quantified the cellular composition of the caudal-most body region, the tail plate, and investigated regeneration of the tail plate in vivo and in semithin sections labeled with bromodeoxyuridine, a marker for stem cells (neoblasts) in S-phase.  相似文献   
57.
We have synthesized quinolinones with potential antiparasitic and anti-HIV activities by an original two-step method involving microwave irradiation and have evaluated their activities against Plasmodium falciparum, Leishmania donovani, Trichomonas vaginalis, and HIV. None of the tested compounds had been previously described using this method of synthesis. One of the compounds had interesting antiparasitic and anti-HIV activity, which could be improved by substitution with different radicals.  相似文献   
58.
The increasing production of food waste worldwide and new international regulations call for the development of new technologies to treat this biowaste. Anaerobic processes are able to treat efficiently organic wastes, producing at the same time different value-added compounds. In addition, due to the lower costs and environmental impacts associated with these processes when compared to other options, they are among the most promising technologies for food waste treatment. This article reviews the state-of-the-art dealing with treatment of food waste by anaerobic processes, with emphasis on the most recent research carried out. The different processes that are assessed are anaerobic digestion for methane production, anaerobic fermentation for hydrogen and/or volatile fatty acids production and 2-stage systems. The primary issues associated with each alternative are presented, paying special attention to accumulation of ammonia and volatile fatty acids in the reactor. In addition, the latest developments to overcome the complications of each system are also described, focusing on how they improve its stability and performance. Moreover, the relevant economic and environmental research has also been reviewed, including several life cycle analyses that compare anaerobic processes with other technologies used for food waste treatment. Different case studies are also presented. Finally, recommendations for future research for the anaerobic processes studied and options for process integration are discussed. Moving towards the idea of a circular economy, a potential biorefinery for food waste valorization is also proposed.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号