首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   791篇
  免费   74篇
  国内免费   1篇
  2023年   5篇
  2022年   16篇
  2021年   32篇
  2020年   24篇
  2019年   24篇
  2018年   34篇
  2017年   26篇
  2016年   33篇
  2015年   41篇
  2014年   60篇
  2013年   61篇
  2012年   68篇
  2011年   72篇
  2010年   31篇
  2009年   36篇
  2008年   53篇
  2007年   51篇
  2006年   42篇
  2005年   33篇
  2004年   35篇
  2003年   34篇
  2002年   26篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1978年   2篇
  1962年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有866条查询结果,搜索用时 296 毫秒
81.
Liquid transport of minute amounts of biomaterials is of paramount importance in many biotechnological applications. One of the challenges is the transport of viscous liquids without heating. Electro hydro dynamic atomization or electrospray is a viable method for the controlled transport of nanoliter volume of viscous liquids as shown for PEG400. Experimental results and the design of a novel spraying configuration, which can be incorporated in an optical microscope, are reported.  相似文献   
82.
Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracellular UO(2) nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO(2) nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO(2)-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO(2) nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO(2) nanoparticles. In the environment, such association of UO(2) nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O(2) or transport in soils and sediments.  相似文献   
83.
Mammalian cytosolic and mitochondrial thioredoxin reductases are essential selenocysteine-containing enzymes that control thioredoxin functions. Thioredoxin/glutathione reductase (TGR) is a third member of this enzyme family. It has an additional glutaredoxin domain and shows highest expression in testes. Herein, we found that human and several other mammalian TGR genes lack any AUG codons that could function in translation initiation. Although mouse and rat TGRs have such codons, we detected protein sequences upstream of them by immunoblot assays and direct proteomic analyses. Further gene engineering and expression analyses demonstrated that a CUG codon, located upstream of the sequences previously thought to initiate translation, is the actual start codon in mouse TGR. The use of this codon relies on the Kozak consensus sequence and ribosome-scanning mechanism. However, CUG serves as an inefficient start codon that allows downstream initiation, thus generating two isoforms of the enzyme in vivo and in vitro. The use of CUG evolved in mammalian TGRs, and in some of these organisms, GUG is used instead. The newly discovered longer TGR form shows cytosolic localization in cultured cells and is expressed in spermatids in mouse testes. This study shows that CUG codon is used as an inefficient start codon to generate protein isoforms in mouse.  相似文献   
84.
85.
Ribosomal protein S1 promotes transcriptional cycling   总被引:4,自引:2,他引:2  
  相似文献   
86.
87.
Novel techniques for simultaneous analysis of X-ray and neutron scattering patterns from macromolecular complexes in solution are presented. They include ab initio shape and internal structure determination of multicomponent particles and more detailed rigid body modeling of complexes using high resolution structures of subunits. The methods fit simultaneously X-ray and neutron scattering curves including contrast variation data sets from selectively deuterated complexes. Biochemically sound interconnected models without steric clashes between the components displaying a pre-defined symmetry are generated. For rigid body modeling, distance restraints between specified residues/nucleotides or their ranges are taken into account. The efficiency of the methods is demonstrated in model examples, and potential sources of ambiguity are discussed.  相似文献   
88.
Preservation of genetic information in DNA relies on shielding the nucleobases from damage within the double helix. Thermal fluctuations lead to infrequent events of the Watson-Crick basepair opening, or DNA "breathing", thus making normally buried groups available for modification and interaction with proteins. Fluctuational basepair opening implies the disruption of hydrogen bonds between the complementary bases and flipping of the base out of the helical stack. Prediction of sequence-dependent basepair opening probabilities in DNA is based on separation of the two major contributions to the stability of the double helix: lateral pairing between the complementary bases and stacking of the pairs along the helical axis. The partition function calculates the basepair opening probability at every position based on the loss of two stacking interactions and one base-pairing. Our model also includes a term accounting for the unfavorable positioning of the exposed base, which proceeds through a formation of a highly constrained small loop, or a ring. Quantitatively, the ring factor is found as an adjustable parameter from the comparison of the theoretical basepair opening probabilities and the experimental data on short DNA duplexes measured by NMR spectroscopy. We find that these thermodynamic parameters suggest nonobvious sequence dependent basepair opening probabilities.  相似文献   
89.
Whitten ST  Kurtz AJ  Pometun MS  Wand AJ  Hilser VJ 《Biochemistry》2006,45(34):10163-10174
Recent advances in NMR methodology have enabled the structural analysis of proteins at temperatures far below the freezing point of water, thus opening a window to the cold denaturation process. Although the phenomenon of cold denaturation has been known since the mid-1970s, the freezing point of water has prevented detailed and structurally resolved studies without application of additional significant perturbations of the protein ensemble. As a result, the cold-denatured state and the process of cold denaturation have gone largely unstudied. Here, the structural and thermodynamic basis of cold denaturation is explored with emphasis placed on the insights that are uniquely ascertained from low-temperature studies. It is shown that the noncooperative cold-induced unfolding of protein results in the population of partially folded states that cannot be accessed by other techniques. The structurally resolved view of the cold denaturation process therefore can provide direct access to the cooperative substructures within the protein molecule and provide an unprecedented structurally resolved picture of the states that comprise the native state ensemble.  相似文献   
90.
The Z-disk region defines the lateral boundary of the sarcomere and requires a high level of mechanical strength to provide a stable framework for large filamentous muscle proteins. The level of complexity at this area is reflected by a large number of protein-protein interactions. Recently, we unraveled how the N-terminus of the longest filament component, the giant muscle protein titin, is assembled into an antiparallel (2:1) sandwich complex by the N-terminal titin-binding segment of the Z-disk ligand telethonin/T-cap [Zou, P., Pinotsis, N., Lange, S., Song, Y.H., Popov, A., Mavridis, I., Mayans, O.M., Gautel, M., Wilmanns, M., 2006. Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439, 229-233]. In this contribution, we present structural data of a related complex of the titin N-terminus with full-length telethonin. The C-terminus of telethonin remains invisible, suggesting that it does not fold into a defined structure even in the presence of titin. In contrast to the structure with truncated telethonin, a dimer of two titin/telethonin complexes is formed within the crystal environment, potentially indicating the formation of higher oligomers. We further investigated the structure and dynamics of this assembly by small-angle X-ray scattering, circular dichroism, and in vivo complementation data. The data consistently indicate the involvement of the C-terminal part of telethonin into the assembly of two titin/telethonin complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号