首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3088篇
  免费   267篇
  国内免费   4篇
  3359篇
  2023年   14篇
  2022年   38篇
  2021年   67篇
  2020年   39篇
  2019年   53篇
  2018年   54篇
  2017年   48篇
  2016年   90篇
  2015年   119篇
  2014年   141篇
  2013年   173篇
  2012年   178篇
  2011年   213篇
  2010年   116篇
  2009年   109篇
  2008年   123篇
  2007年   141篇
  2006年   126篇
  2005年   108篇
  2004年   127篇
  2003年   107篇
  2002年   124篇
  2001年   41篇
  2000年   27篇
  1999年   25篇
  1998年   22篇
  1997年   30篇
  1996年   29篇
  1995年   27篇
  1994年   17篇
  1993年   17篇
  1992年   15篇
  1991年   18篇
  1990年   18篇
  1989年   26篇
  1988年   18篇
  1987年   22篇
  1986年   24篇
  1985年   21篇
  1984年   33篇
  1983年   20篇
  1982年   30篇
  1981年   21篇
  1980年   31篇
  1977年   16篇
  1976年   16篇
  1974年   17篇
  1973年   27篇
  1970年   14篇
  1969年   16篇
排序方式: 共有3359条查询结果,搜索用时 15 毫秒
81.
We reported previously that mice lacking plasma retinol-binding protein (RBP) are phenotypically normal except that they display impaired vision at the time of weaning. This visual defect is associated with greatly diminished eyecup levels of retinaldehyde and is reversible if the mutants are maintained for several months on a vitamin A-sufficient diet. Here we provide a biochemical basis for the visual phenotype of RBP-deficient mice. This phenotype does not result from inadequate milk total retinol levels since these are not different for RBP-deficient and wild-type mice. The eye, unlike all other tissues that have been examined, takes up dietary retinol very poorly. Moreover, compared to other tissues, the eye displays a strong preference for retinol uptake when retinol is delivered bound to RBP. The poor uptake of dietary retinol by the eye coupled with its marked ability to take up retinol from RBP, we propose, provides a basis for the impaired vision observed in weanling RBP-deficient mice. Further study of the mutants suggests that the impaired vision is reversible because the eyes of mutant mice slowly acquire sufficient retinol from the low levels of retinol present in their circulation either bound to albumin or present in lipoprotein fractions. Thus, the eye is unlike other tissues in the body in that it shows a very marked preference for acquiring retinol needed to support vision from the retinol-RBP complex and is unable to meet adequately its retinol need through uptake of recently absorbed dietary retinol. This provides an explanation for the impaired vision phenotype of RBP-deficient mice.  相似文献   
82.

Background

Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood.

Methodology/Principal Findings

To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum) more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes.

Conclusions/Significance

This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies little on its animal virulence genes for persistence within the fruit.  相似文献   
83.
Paramutation is the transfer of epigenetic information between alleles that leads to a heritable change in expression of one of these alleles. Paramutation at the tissue‐specifically expressed maize (Zea mays) b1 locus involves the low‐expressing B′ and high‐expressing B‐I allele. Combined in the same nucleus, B′ heritably changes B‐I into B′. A hepta‐repeat located 100‐kb upstream of the b1 coding region is required for paramutation and for high b1 expression. The role of epigenetic modifications in paramutation is currently not well understood. In this study, we show that the B′ hepta‐repeat is DNA‐hypermethylated in all tissues analyzed. Importantly, combining B′ and B‐I in one nucleus results in de novo methylation of the B‐I repeats early in plant development. These findings indicate a role for hepta‐repeat DNA methylation in the establishment and maintenance of the silenced B′ state. In contrast, nucleosome occupancy, H3 acetylation, and H3K9 and H3K27 methylation are mainly involved in tissue‐specific regulation of the hepta‐repeat. Nucleosome depletion and H3 acetylation are tissue‐specifically regulated at the B‐I hepta‐repeat and associated with enhancement of b1 expression. H3K9 and H3K27 methylation are tissue‐specifically localized at the B′ hepta‐repeat and reinforce the silenced B′ chromatin state. The B′ coding region is H3K27 dimethylated in all tissues analyzed, indicating a role in the maintenance of the silenced B′ state. Taken together, these findings provide insight into the mechanisms underlying paramutation and tissue‐specific regulation of b1 at the level of chromatin structure.  相似文献   
84.
Ceramides are potent bioactive molecules in cells. However, they are very hydrophobic molecules, and difficult to deliver efficiently to cells. We have made fluid bilayers from a short-chain D-erythro-ceramide (C6-Cer) and cholesteryl phosphocholine (CholPC), and have used this as a formulation to deliver ceramide to cells. C6-Cer complexed with CholPC led to much larger biological effects in cultured cells (rat thyroid FRTL-5 and human HeLa cells in culture) compared to C6-Cer dissolved in dimethyl sulfoxide (DMSO). Inhibition of cell proliferation and induction of apoptosis was significantly more efficient by C6-Cer/CholPC compared to C6-Cer dissolved in DMSO. C6-Cer/CholPC also permeated cell membranes and caused mitochondrial Ca2+ influx more efficiently than C6-Cer in DMSO. Even though CholPC was taken up by cells to some extent (from C6-Cer/CholPC bilayers), and was partially hydrolyzed to free cholesterol (about 9%), none of the antiproliferative effects were due to CholPC or excess cholesterol. The ceramide effect was not limited to D-erythro-C6-Cer, since L-erythro-C6-Cer and D-erythro-C6-dihydroCer also inhibited cell priolifereation and affected Ca2+ homeostasis. We conclude that C6-Cer complexed to CholPC increased the bioavailability of the short-chain ceramide for cells, and potentiated its effects in comparison to solvent-dissolved C6-Cer. This new ceramide formulation appears to be superior to previous solvent delivery approaches, and may even be useful with longer-chain ceramides.  相似文献   
85.
High pressure liquid chromatography has been used to study the acid soluble nucleotide pool of Saccharomyces cerevisiae under different conditions of growth. ATP, ADP, AMP, NAD, GTP, UTP, UDP, CTP, CDP, and UDP-sugars plus UMP could be separated and were found in concentrations higher than 0.1 mumol per g yeast cell dry weight (= detection limit). During glucose-limited continuous culture the levels of individual nucleotides depended on the growth rate, which was most pronounced with pyrimidine (uridine, cytidine) nucleotides. The energy charge (E.C.) remained high (0.9) at all growth rates (0.07-0.3 h-1). During synchronized growth at a constant growth rate (0.11 h-1) almost all nucleotide levels and the E.C. remained at constant values with the only exception of UDP-sugars and UMP of which increased levels were found during the phase of budding. Under conditions of metabolic stress (addition of antimycin A, deoxyglucose plus iodoacetate) pronounced changes in the levels of purine (adenine and guanine) nucleotides and the E.C. were observed. All other nucleotides were less influenced by these conditions. Only under these conditions IMP accumulation was observed. The results strongly argue against the significance of purine nucleotide or E.C. measurements under viable conditions. In contrast, changes in the levels of pyrimidine nucleotides seem to be indicative of changes in the flux through the metabolic pathways where they act as coenzymes.  相似文献   
86.
87.
Isolated testes of the locust Schistocerca gregaria were immersed in solutions of tritiated thymidine, cytidine, uridine, or arginine for short periods to study nucleic acid and protein synthesis during spermatogenesis. DNA synthesis in this tissue is completed prior to initiation of meiosis. Protein synthesis continues throughout the whole meiotic cycle as well as during spermatid development. Meiotic cells, except those in metaphase through early telophase, and early spermatids are also actively synthesizing RNA. The heteropycnotic X-chromosome does not produce RNA at any stage of spermatogenesis. The rates of protein and particularly RNA synthesis decrease as chromosome condensation progresses. Depression of RNA synthesis, however, is not always accompanied by cytologically detectable condensation of chromatin, since very little or no RNA is synthesized in spermatids in which chromatin condensation has barely begun.  相似文献   
88.
89.
90.
The endothelial glycocalyx has been shown to serve as a protective barrier between the flowing blood and the vessel wall in experimental models. The aim of this study was to evaluate whether hypercholesterolemia is associated with glycocalyx perturbation in humans, and if so, whether statin treatment can restore this. We measured systemic glycocalyx volume (V(G)) in 13 patients with heterozygous familial hypercholesterolemia (FH) after cessation of lipid-lowering therapy for a minimum of 4 weeks and 8 weeks after initiating rosuvastatin therapy. Normocholesterolemic subjects were used as controls. V(G) was estimated by subtracting the intravascular distribution volume of a glycocalyx permeable tracer (dextran 40) from that of a glycocalyx impermeable tracer (labeled erythrocytes). V(G) in untreated FH patients [LDL 225 +/- 57 mg/dl (mean +/- SD)] was significantly reduced compared with controls (LDL 93 +/- 24 mg/dl) (V(G) 0.8 +/- 0.3 vs. 1.7 +/- 0.6, respectively, P < 0.001). After normalization of LDL levels (95 +/- 33 mg/dl) upon 8 weeks of statin treatment, V(G) recovered only partially (V(G) 1.1 +/- 0.4 L, P = 0.04). The endothelial glycocalyx is profoundly reduced in FH patients, which may contribute to increased atherogenic vulnerability. This perturbation is partially restored upon short-term statin therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号