首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   27篇
  2022年   1篇
  2021年   7篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   8篇
  2012年   8篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1961年   1篇
  1958年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
11.
Histidine 64 in human carbonic anhydrase II (HCA II) functions in the catalytic pathway of CO(2) hydration as a shuttle to transfer protons between the zinc-bound water and bulk water. Catalysis of the exchange of (18)O between CO(2) and water, measured by mass spectrometry, is dependent on this proton transfer and was decreased more than 10-fold for H64A HCA II compared with wild-type HCA II. The loss of catalytic activity of H64A HCA II could be rescued by 4-methylimidazole (4-MI), an exogenous proton donor, in a saturable process with a maximum activity of 40% of wild-type HCA II. The crystal structure of the rescued complex at 1.6 A resolution shows 4-MI bound in the active-site cavity of H64A HCA II, through pi stacking interactions with Trp 5 and H-bonding interactions with water molecules. In this location, 4-MI is about 12 A from the zinc and approximates the observed "out" position of His 64 in the structure of the wild-type enzyme. 4-MI appears to compensate for the absence of His 64 and rescues the catalytic activity of the H64A HCA II mutant. This result strongly suggests that the out conformation of His 64 is effective in the transfer of protons between the zinc-bound solvent molecule and solution.  相似文献   
12.
High-throughput screening with cyclin-dependent kinase 5 (cdk5)/p25 led to the discovery of N-(5-isopropyl-thiazol-2-yl)isobutyramide (1). This compound is an equipotent inhibitor of cdk5 and cyclin-dependent kinase 2 (cdk2)/cyclin E (IC(50)=ca. 320nM). Parallel and directed synthesis techniques were utilized to explore the SAR of this series. Up to 60-fold improvements in potency at cdk5 and 12-fold selectivity over cdk2 were achieved.  相似文献   
13.
We report the crystal structure of a binary complex of human peroxisomal carnitine acetyltransferase and the substrate l-carnitine, refined to a resolution of 1.8 Angstrom with an R(factor) value of 18.9% (R(free)=22.3%). L-carnitine binds to a preformed pocket in the active site tunnel of carnitine acetyltransferase aligned with His(322). The quaternary nitrogen of carnitine forms a pi-cation interaction with Phe(545), while Arg(497) forms an electrostatic interaction with the negatively charged carboxylate group. An extensive hydrogen bond network also occurs between the carboxylate group and Tyr(431), Thr(444), and a bound water molecule. Site-directed mutagenesis and kinetic characterization reveals that Tyr(431), Thr(444), Arg(497), and Phe(545) are essential for high affinity binding of L-carnitine.  相似文献   
14.
The adeno-associated virus type 2 (AAV2) uses heparan sulfate proteoglycan (HSPG) as its primary cellular receptor. In order to identify amino acids within the capsid of AAV2 that contribute to HSPG association, we used biochemical information about heparin and heparin sulfate, AAV serotype protein sequence alignments, and data from previous capsid studies to select residues for mutagenesis. Charged-to-alanine substitution mutagenesis was performed on individual residues and combinations of basic residues for the production and purification of recombinant viruses that contained a green fluorescent protein (GFP) reporter gene cassette. Intact capsids were assayed for their ability to bind to heparin-agarose in vitro, and virions that packaged DNA were assayed for their ability to transduce normally permissive cell lines. We found that mutation of arginine residues at position 585 or 588 eliminated binding to heparin-agarose. Mutation of residues R484, R487, and K532 showed partial binding to heparin-agarose. We observed a general correlation between heparin-agarose binding and infectivity as measured by GFP transduction; however, a subset of mutants that partially bound heparin-agarose (R484A and K532A) were completely noninfectious, suggesting that they had additional blocks to infectivity that were unrelated to heparin binding. Conservative mutation of positions R585 and R588 to lysine slightly reduced heparin-agarose binding and had comparable effects on infectivity. Substitution of AAV2 residues 585 through 590 into a location predicted to be structurally equivalent in AAV5 generated a hybrid virus that bound to heparin-agarose efficiently and was able to package DNA but was noninfectious. Taken together, our results suggest that residues R585 and R588 are primarily responsible for heparin sulfate binding and that mutation of these residues has little effect on other aspects of the viral life cycle. Interactive computer graphics examination of the AAV2 VP3 atomic coordinates revealed that residues which contribute to heparin binding formed a cluster of five basic amino acids that presented toward the icosahedral threefold axis from the surrounding spike protrusion. Three other kinds of mutants were identified. Mutants R459A, H509A, and H526A/K527A bound heparin at levels comparable to that of wild-type virus but were defective for transduction. Another mutant, H358A, was defective for capsid assembly. Finally, an R459A mutant produced significantly lower levels of full capsids, suggesting a packaging defect.  相似文献   
15.
Carnitine acyltransferases are a family of ubiquitous enzymes that play a pivotal role in cellular energy metabolism. We report here the x-ray structure of human carnitine acetyltransferase to a 1.6-A resolution. This structure reveals a monomeric protein of two equally sized alpha/beta domains. Each domain is shown to have a partially similar fold to other known but oligomeric enzymes that are also involved in group-transfer reactions. The unique monomeric arrangement of the two domains constitutes a central narrow active site tunnel, indicating a likely universal feature for all members of the carnitine acyltransferase family. Superimposition of the substrate complex of a related protein, dihydrolipoyl trans-acetylase, reveals that both substrates localize to the active site tunnel of human carnitine acetyltransferase, suggesting the location of the ligand binding sites for carnitine and coenzyme A. Most significantly, this structure provides critical insights into the molecular basis for fatty acyl chain transfer and a possible common mechanism among a wide range of acyltransferases utilizing a catalytic dyad.  相似文献   
16.
An antiparallel actin dimer has been proposed to be an intermediate species during actin filament nucleation. We now show that latrunculin A, a marine natural product that inhibits actin polymerization, arrests polylysine-induced nucleation at the level of an antiparallel dimer, resulting in its accumulation. These dimers, when composed of pyrene-labeled actin subunits, give rise to a fluorescent excimer, permitting detection during polymerization in vitro. We report the crystallographic structure of the polylysine-actin-latrunculin A complex at 3.5-A resolution. The non-crystallographic contact is consistent with a dimeric structure and confirms the antiparallel orientation of its subunits. The crystallographic contacts reveal that the mobile DNase I binding loop of one subunit of a symmetry-related antiparallel actin dimer is partially stabilized in the interface between the two subunits of a second antiparallel dimer. These results provide a potential explanation for the paradoxical nucleation of actin filaments that have exclusively parallel subunits by a dimer containing antiparallel subunits.  相似文献   
17.
The determinants of nuclear import in the VP-1 and VP-2 capsid proteins of the parvovirus minute virus of mice strain i (MVMi) synthesized in human fibroblasts were sought by genetic analysis in an infectious plasmid. Immunofluorescence of transfected cells revealed that the two proteins were involved in cooperative cytoplasmic interactions for nuclear cotransport. However, while VP-1 translocated regardless of extension of deletions and did not form capsid epitopes by itself, VP-2 seemed to require cytoplasmic folding and the overall conformation for nuclear transport. The sequence (528)KGKLTMRAKLR(538) was found necessary for nuclear uptake of VP-2, even though it was not sufficient to confer a nuclear localization capacity on a heterologous protein. In the icosahaedral MVMi capsid, this sequence forms the carboxy end of the amphipathic beta-strand I (betaI), and all its basic residues are contiguously positioned at the face that in the unassembled subunit would be exposed to solvent. Mutations in singly expressed VP-2 that either decrease the net basic charge of the exposed face (K530N-R534T), perturb the hydrophobicity of the opposite face (L531E), or distort the betaI conformation (G529P) produced cytoplasmic subviral oligomers. Particle formation by betaI mutants indicated that the basic residues clustered at one face of betaI drive VP oligomers into the nucleus preceding and uncoupled to assembly and that the nuclear environment is required for MVMi capsid formation in the infected cell. The degree of VP-1/VP-2 transport cooperativity suggests that VP trimers are the morphogenetic intermediates translocating through the nuclear pore. The results support a model in which nuclear transport signaling preserves the VP-1/VP-2 stoichiometry necessary for efficient intranuclear assembly and in which the beta-stranded VP-2 nuclear localization motif contributes to the quality control of viral morphogenesis.  相似文献   
18.

Background

Diagnosing hepatic injury in HIV infection can be a herculean task for clinicians as several factors may be involved. In this study, we sought to determine the effects of antiretroviral therapy (ART) and disease progression on hepatic enzymes in HIV patients.

Methods

A case-control study conducted from January to May 2014 at the Akwatia Government Hospital, Eastern region, Ghana, The study included 209 HIV patients on ART (designated HIV-ART) and 132 ART-naive HIV patients (designated HIV-Controls). Data gathered included demography, clinical history and results of blood tests for hepatic enzymes. We employed the Fisher’s, Chi-square, unpaired t-test and Pearson’s correlation in analysis, using GraphPad Prism and SPSS. A P value < 0.05 was considered significant.

Results

Median CD4 lymphocyte count of HIV-ART participants (604.00 cells/mm3) was higher than that of HIV-Controls (491.50 cells/mm3; P = 0.0005). Mean values of ALP, ALT, AST and GGT did not differ between the two groups compared (P > 0.05). There was a significant positive correlation between hepatic enzymes (ALP, ALT, AST and GGT) for both groups (p < 0.01 each). Duration of ART correlated positively with ALT (p < 0.05). The effect size of disease progression on hepatic enzymes for both groups was small.

Conclusion

Antiretroviral therapy amongst this population has minimal effects on hepatic enzymes and does not suggest modifications in therapy. Hepatic injury may occur in HIV, even in the absence of ART and other traditional factors. Monitoring of hepatic enzymes is still important in HIV patients.  相似文献   
19.
20.
Two strains of the parvovirus minute virus of mice (MVM), the immunosuppressive (MVMi) and the prototype (MVMp) strains, display disparate in vitro tropism and in vivo pathogenicity. We report the crystal structures of MVMp virus-like particles (MVMp(b)) and native wild-type (wt) empty capsids (MVMp(e)), determined and refined to 3.25 and 3.75 A resolution, respectively, and their comparison to the structure of MVMi, also refined to 3.5 A resolution in this study. A comparison of the MVMp(b) and MVMp(e) capsids showed their structures to be the same, providing structural verification that some heterologously expressed parvovirus capsids are indistinguishable from wt capsids produced in host cells. The structures of MVMi and MVMp capsids were almost identical, but local surface conformational differences clustered from symmetry-related capsid proteins at three specific domains: (i) the icosahedral fivefold axis, (ii) the "shoulder" of the protrusion at the icosahedral threefold axis, and (iii) the area surrounding the depression at the icosahedral twofold axis. The latter two domains contain important determinants of MVM in vitro tropism (residues 317 and 321) and forward mutation residues (residues 399, 460, 553, and 558) conferring fibrotropism on MVMi. Furthermore, these structural differences between the MVM strains colocalize with tropism and pathogenicity determinants mapped for other autonomous parvovirus capsids, highlighting the importance of common parvovirus capsid regions in the control of virus-host interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号