首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1988年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有77条查询结果,搜索用时 578 毫秒
61.
62.
The first step towards ATP synthesis by the Ca2-ATPase of sarcoplasmic reticulum is the phosphorylation of the enzyme by Pi. Phosphoenzyme formation requires both Pi and Mg2+. At 35 degrees C, the presence of a Ca2+ gradient across the vesicle membrane increases the apparent affinity of the ATPase for Pi more than 10-fold, whereas it had no effect on the apparent affinity for Mg2+. In the absence of a Ca2+ gradient, the phosphorylation reaction is inhibited by both K+ and Na+ at all Mg2+ concentrations used. However, in the presence of 1 mM Mg2+ and of a transmembrane Ca2+ gradient, the reaction is still inhibited by Na+, but the inhibition promoted by K+ is greatly decreased. When the Mg2+ concentration is raised above 2 mM, the enzyme no longer discriminates between K+ and Na+, and the phosphorylation reaction is equally inhibited by the two cations. Trifluoperazine, ruthenium red and spermidine were found to inhibit the phosphorylation reaction by different mechanisms. In the absence of a Ca2+ gradient, trifluoperazine competes with the binding to the enzyme of both Pi and Mg2+, whereas spermidine and ruthenium red were found to compete only with Mg2+. The data presented suggest that the enzyme has different binding sites for Mg2+ and for Pi.  相似文献   
63.
The effect of leukoregulin, a 50-kD lymphokine with unique antitumor properties, was studied in vitro on several fibroblast functions. Leukoregulin did not inhibit fibroblast proliferation, as measured by cell enumeration and [3H]thymidine incorporation, and had no cytotoxic effect in terms of increased membrane permeability detected by trypan blue exclusion, two of the major leukoregulin actions on tumor cells. Leukoregulin induced a dose-dependent decrease in collagen synthesis, demonstrated by decreased [3H]proline incorporation into collagenase-digestible protein, as early as 6 h after the addition of the lymphokine to human fibroblasts. Leukoregulin inhibited the synthesis of both type I and type III collagen, as measured by SDS-PAGE and by specific radioimmunoassay. Neutralizing antibodies to interleukin-1 alpha, interleukin-1 beta, tumor necrosis factor-alpha, and interferon-gamma failed to alter the effect of leukoregulin on collagen synthesis, attesting that leukoregulin action was not due to contamination by these cytokines. Inhibition of collagen synthesis occurred concomitantly with increased secretion of prostaglandin E2 and a transient rise in intracellular cyclic AMP content, peaking at 6 h. However, blocking prostaglandin synthesis with indomethacin did not counteract inhibition of collagen synthesis by leukoregulin, demonstrating independence of this action of leukoregulin from cyclooxygenase metabolites. Leukoregulin also stimulated glycosaminoglycan production in a dose-dependent manner, affecting the synthesis of hyaluronic acid as the major fibroblast-derived extracellular glycosaminoglycan. In addition, secretion of neutral proteases (collagenase, elastase, caseinase) was increased. These observations indicate that leukoregulin is able to regulate synthesis of molecules critical to the deposition of the extracellular matrix by nontransformed nonmalignant fibroblasts.  相似文献   
64.
65.
EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair   总被引:20,自引:0,他引:20  
Matrix metalloproteinases (MMPs) play a central role in normal tissue remodeling and disease, they regulate tumor microenvironment and their expression is increased in most human cancers. Targeting their activity remains a major challenge. Their production and activation is tightly regulated by complex mechanisms that include cytokines and growth factors, cell-matrix and cell-cell interactions. The observations of increased MMP level at the epithelio-stromal interface led to the identification of EMMPRIN/CD147, a membrane spanning molecule highly expressed in tumor cells, that stimulates MMPs production in neighboring fibroblasts. Later studies have shown that EMMPRIN can also induce MMP in the same population of cells. Elevated EMMPRIN level was detected in numerous malignant tumors and has been correlated with tumor progression in experimental and clinical conditions. The presence and modulation of EMMPRIN in normal tissues associated with increased MMP expression suggests that this EMMPRIN-mediated MMP induction could be a common mechanism in non-tumoral physiological and/or pathological situations. Targeting EMMPRIN in cancer and other pathological conditions such arthritis and ulceration appears a promising future therapeutic strategy, but requires a better understanding of its mode of action and regulation. Potential regulators that influence EMMPRIN level and its MMP inducing activity include growth factors, hormones, glycosylation and membrane shedding. This review will discuss the recent findings concerning these diverse regulatory mechanisms in various physiological and pathological situations.  相似文献   
66.
The study of the conformational changes of bovine alpha-lactalbumin, switching from soluble states to membrane-bound states, deepens our knowledge of the behaviour of amphitropic proteins. The binding and the membrane-bound conformations of alpha-lactalbumin are highly sensitive to environmental factors, like calcium and proton concentrations, curvature and charge of the lipid membrane. The interactions between the protein and the membrane result from a combination of hydrophobic and electrostatic interactions and the respective weights of these interactions depend on the physicochemical conditions. As inferred by macroscopic as well as residue-level methods, the conformations of the membrane-bound protein range from native-like to molten globule-like states. However, the regions anchoring the protein to the membrane are similar and restricted to amphiphilic alpha-helices. H/(2)H-exchange experiments also yield residue-level data that constitute comprehensive information providing a new point of view on the thermodynamics of the interactions between the protein and the membrane.  相似文献   
67.
We investigated whether the structural and functional behaviors of two unrelated protein domains were modified when fused. The IgG-binding protein ZZ derived from staphylococcal protein A was fused to the N- and/or C-terminus of the diphtheria toxin transmembrane domain (T). T undergoes a conformational change from a soluble native state at neutral pH to a molten globule-like state at acidic pH, leading to its interaction with membranes. We found that this molten globule state was not connected to the GdnHCl-induced unfolding pathway of T. The pH-induced transition of T, and also the unfolding of T and ZZ at neutral and acidic pH, were unchanged whether the domains were isolated or fused. The position of ZZ, however, influenced the solubility of T near its pK(i). SPR measurements revealed that T has a high affinity for membranes, isolated or within the fusion proteins (K(D)< 10(-11) M). This work shows that in the case of T and ZZ, the fusion of protein domains with different stabilities does not alter the structural changes involved in folding and function. This supports the use of T as a soluble membrane anchor.  相似文献   
68.
69.
Morin I  Cuillel M  Lowe J  Crouzy S  Guillain F  Mintz E 《FEBS letters》2005,579(5):1117-1123
Copper delivery to Ccc2--the Golgi Cu+-ATPase--was investigated in vivo, replacing the Cu+-chaperone Atx1 by various structural homologues in an atx1-Delta yeast strain. Various proteins, displaying the same ferredoxin-like fold and (M/L)(T/S)CXXC metal-binding motif as Atx1 and known as Cu+-, Cd2+- or Hg2+-binding proteins were able to replace Atx1. Therefore, regardless of their original function, these proteins could all bind copper and transfer it to Ccc2, suggesting that Ccc2 is opportunistic and can interact with many different proteins to gain Cu+. The possible role of electrostatic potential surfaces in the docking of Ccc2 with these Atx1-homologues is discussed.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号