首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  77篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1988年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有77条查询结果,搜索用时 10 毫秒
41.
To localize and characterize the regulatory nucleotide site of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase, we have investigated the effects of ADP, ATP, and analogues of these nucleotides on the rate of dephosphorylation of both native ATPase and ATPase modified with fluorescein 5'-isothiocyanate (FITC), a reagent which hinders access of nucleotides to the ATPase catalytic site without affecting phosphorylation from Pi. Dephosphorylation of the phosphoenzyme formed from Pi was monitored by rapid filtration or stopped-flow fluorescence, mostly at 20 degrees C, pH 6.0, and in the absence of potassium. Fluorescence measurements were made possible through the use of 8-bromo-ATP, which selectively quenched certain tryptophan residues of the ATPase, thereby allowing the intrinsic fluorescence changes associated with dephosphorylation to be measured in the presence of bound nucleotide. ATP, 8-bromo-ATP, and trinitrophenyladenosine diand triphosphate, but not ADP, enhanced the rate of dephosphorylation of native ATPase 2-3-fold when added in the absence of divalent cations. Millimolar concentrations of Mg2+ eliminated the accelerating effects. Acceleration in the absence of Mg2+ was observed at relatively low concentrations of ATP and 8-bromo-ATP (0.01-0.1 mM) and binding of metal-free ATP and ADP, but not Mg.ATP, to the phosphoenzyme in this concentration range was demonstrated directly. Modification of the ATPase with FITC blocked nucleotide binding in the submillimolar concentration range and eliminated the nucleotide-induced acceleration of dephosphorylation. These results show that dephosphorylation, under these conditions, is regulated by ATP but not by Mg.ATP or ADP, and that the catalytic site is the locus of this "regulatory" ATP binding site.  相似文献   
42.
43.
CadA, the Cd(2+)-ATPase from Listeria monocytogenes, belongs to the Zn(2+)/Cd(2+)/Pb(2+)-ATPase bacterial subfamily of P(1B)-ATPases that ensure detoxification of the bacteria. Whereas it is the major determinant of Listeria resistance to Cd(2+), CadA expressed in Saccharomyces cerevisiae severely decreases yeast tolerance to Cd(2+) (Wu, C. C., Bal, N., Pérard, J., Lowe, J., Boscheron, C., Mintz, E., and Catty, P. (2004) Biochem. Biophys. Res. Commun. 324, 1034-1040). This phenotype, which reflects in vivo Cd(2+)-transport activity, was used to select from 33 point mutations, shared out among the eight transmembrane (TM) segments of CadA, those that affect the activity of the protein. Six mutations affecting CadA were found: M149A in TM3; E164A in TM4; C354A, P355A, and C356A in TM6; and D692A in TM8. Functional studies of the six mutants produced in Sf9 cells revealed that Cys(354) and Cys(356) in TM6 as well as Asp(692) in TM8 and Met(149) in TM3 could participate at the Cd(2+)-binding site(s). In the canonical Cys-Pro-Cys motif of P(1B)-ATPases, the two cysteines act at distinct steps in the transport mechanism, Cys(354) being directly involved in Cd(2+) binding, while Cys(356) seems to be required for Cd(2+) occlusion. This confirms an earlier observation that the two equivalent Cys of Ccc2, the yeast Cu(+)-ATPase, also act at different steps. In TM4, Glu(164), which is conserved among P(1B)-ATPases, may be required for Cd(2+) release. Finally, analysis of the role of Cd(2+) in the phosphorylation from ATP and from P(i) of the mutants suggests that two Cd(2+) ions are involved in the reaction cycle of CadA.  相似文献   
44.
45.
Javelaud D  Pierrat MJ  Mauviel A 《FEBS letters》2012,586(14):2016-2025
Hedgehog (HH) and TGF-β signals control various aspects of embryonic development and cancer progression. While their canonical signal transduction cascades have been well characterized, there is increasing evidence that these pathways are able to exert overlapping activities that challenge efficient therapeutic targeting. We herein review the current knowledge on HH signaling and summarize the recent findings on the crosstalks between the HH and TGF-β pathways in cancer.  相似文献   
46.
The list of transforming growth factor-beta (TGF-β)-related proteins in non-canonical TGF-β signaling is growing. Examples include receptor-Smads directing micro-RNA processing and inhibitory-Smads, e.g. Smad7, directing cell adhesion. Human skin grafts with fluorescently tagged melanoma cells revealed Smad7-expressing cells positioned themselves proximal to the dermal–epidermal junction and failed to form tumors, while control cells readily invaded and formed tumors within the dermis. Smad7 significantly inhibited β-catenin T41/S45 phosphorylation associated with degradation and induced a 4.5-fold increase in full-length N-cadherin. Cell adhesion assays confirmed a strong interaction between Smad7-expressing cells and primary dermal fibroblasts mediated via N-cadherin, while control cells were incapable of such interaction. Immunofluorescent analysis of skin grafts indicated N-cadherin homotypic interaction at the surface of both Smad7 cells and primary dermal fibroblasts, in contrast to control melanoma cells. We propose that Smad7 suppresses β-catenin degradation and promotes interaction with N-cadherin, stabilizing association with neighboring dermal fibroblasts, thus mitigating invasion.  相似文献   
47.
JNK1/2 proteins belong to the family of stress-activated protein kinases. They play a complex role in growth regulation, inducing either cell death or growth support. In this report, we provide evidence that, in human melanoma cells, JNK inhibition with the small molecule inhibitor SP600125 induces either predominantly a G2/M arrest or apoptosis depending on the cell line. In 1205Lu cells, JNK inhibition induced cell cycle arrest through p53-dependent induction of p21 Cip1/Waf1 expression, while in WM983B cells, induction of apoptosis by JNK inhibition was accompanied by p53, Bad and Bax induction, not p21 Cip1/Waf1. JNK inhibition with the small molecule inhibitor SP600125 slowed growth of all cell lines, although the effect was markedly greater in cells exhibiting high phospho- (P-)JNK1 levels. Specific gene knockdown of JNK1 by means of siRNA oligonucleotides inhibited cell growth only in melanoma cell lines exhibiting high P-JNK1 levels. siRNAs directed against JNK2 did not reduce cell growth in any of the cell lines tested. Together, our findings demonstrate that JNK, and in particular the JNK1 isoform, support the growth of melanoma cells, by controlling either cell cycle progression or apoptosis depending on the cellular context.  相似文献   
48.
49.
Melanoma is an aggressive malignancy with poor prognosis. Eradication of tumor cells requires an effective interaction between melanoma cells and different players of the immune system. As the most potent professional antigen‐presenting cells, dendritic cells (DCs) play a pivotal role in mounting a specific immune response where their intratumoral and peritumoral density as well as their functional status are correlated with clinical staging of the disease and with patients’ survival. Under steady‐state conditions, internalization of apoptotic cells by immature DCs designates a state of tolerance to self‐antigens. Nevertheless, pathogens and necrotic cells interacting with pattern recognition receptors trigger downstream signaling pathways that evoke maturation of DCs, leading to the production of pro‐inflammatory cytokines. These mature DCs are essential for T‐cell priming and subsequent development of a specific immune response. Altered functions of DCs have an impact on the development of various disorders including autoimmune diseases and cancers. Herein, we focus on the checkpoints created throughout DCs antigen capturing and presentation to T cells, with subsequent development of either tolerance or immune response, with an emphasis on the role played by DCs in melanoma tumorigenesis and their therapeutic potential.  相似文献   
50.
Despite major advances in the understanding of the intimate mechanisms of transforming growth factor-beta (TGF-beta) signaling through the Smad pathway, little progress has been made in the identification of direct target genes. In this report, using cDNA microarrays, we have focussed our attention on the characterization of extracellular matrix-related genes rapidly induced by TGF-beta in human dermal fibroblasts and attempted to identify the ones whose up-regulation by TGF-beta is Smad-mediated. For a gene to qualify as a direct Smad target, we postulated that it had to meet the following criteria: (1) rapid (30 min) and significant (at least 2-fold) elevation of steady-state mRNA levels upon TGF-beta stimulation, (2) activation of the promoter by both exogenous TGF-beta and co-transfected Smad3 expression vector, (3) up-regulation of promoter activity by TGF-beta blocked by both dominant-negative Smad3 and inhibitory Smad7 expression vectors, and (4) promoter transactivation by TGF-beta not possible in Smad3(-/-) mouse embryo fibroblasts. Using this stringent approach, we have identified COL1A2, COL3A1, COL6A1, COL6A3, and tissue inhibitor of metalloproteases-1 as definite TGF-beta/Smad3 targets. Extrapolation of this approach to other extracellular matrix-related gene promoters also identified COL1A1 and COL5A2, but not COL6A2, as novel Smad targets. Together, these results represent a significant step toward the identification of novel, early-induced Smad-dependent TGF-beta target genes in fibroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号