首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2654篇
  免费   186篇
  2023年   11篇
  2022年   19篇
  2021年   36篇
  2020年   29篇
  2019年   28篇
  2018年   54篇
  2017年   49篇
  2016年   81篇
  2015年   105篇
  2014年   125篇
  2013年   195篇
  2012年   202篇
  2011年   184篇
  2010年   139篇
  2009年   132篇
  2008年   173篇
  2007年   160篇
  2006年   164篇
  2005年   126篇
  2004年   155篇
  2003年   113篇
  2002年   120篇
  2001年   18篇
  2000年   15篇
  1999年   32篇
  1998年   28篇
  1997年   22篇
  1996年   19篇
  1995年   30篇
  1994年   18篇
  1993年   23篇
  1992年   20篇
  1991年   17篇
  1990年   29篇
  1989年   18篇
  1988年   12篇
  1987年   5篇
  1986年   9篇
  1985年   11篇
  1984年   9篇
  1983年   9篇
  1982年   11篇
  1981年   16篇
  1980年   8篇
  1979年   5篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1974年   12篇
  1973年   4篇
排序方式: 共有2840条查询结果,搜索用时 31 毫秒
991.
Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)‐producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A‐subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re‐evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS‐pathogenesis and to develop therapeutic approaches.  相似文献   
992.
Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   
993.
Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease.  相似文献   
994.
995.
Creutzfeldt–Jakob disease (CJD) is a neurodegenerative disorder characterized by the deposition of the pathological conformer (PrPCJD) of the host encoded cellular prion protein (PrPC). In genetic CJD associated with V210I or R208H PrP substitutions, the pathogenic role of mutant residues is still poorly understood. To understand how V210I or R208H PrP mutations facilitate the development of the disease, we determined by mass spectrometry the quantitative ratio of mutant/wild-type PrPCJD allotypes in brains from affected subjects. We found that the mutant PrPCJD allotypes moderately exceeds of 2- or 3-fold the amount of the wild-type counterpart suggesting that these mutations mainly exert their pathogenic effect on the onset of the pathogenic cascade.  相似文献   
996.
997.
The exceptional versatility of calmodulin (CaM) three-dimensional arrangement is reflected in the growing number of structural models of CaM/protein complexes currently available in the Protein Data Bank (PDB) database, revealing a great diversity of conformations, domain organization, and structural responses to Ca2 +. Understanding CaM binding is complicated by the diversity of target proteins sequences. Data mining of the structures shows that one face of each of the eight CaM helices can contribute to binding, with little overall difference between the Ca2 + loaded N- and C-lobes and a clear prevalence of the C-lobe low Ca2 + conditions. The structures reveal a remarkable variety of configurations where CaM binds its targets in a preferred orientation that can be reversed and where CaM rotates upon Ca2 + binding, suggesting a highly dynamic metastable relation between CaM and its targets. Recent advances in structure–function studies and the discovery of CaM mutations being responsible for human diseases, besides expanding the role of CaM in human pathophysiology, are opening new exciting avenues for the understanding of the how CaM decodes Ca2 +-dependent and Ca2 +-independent signals.  相似文献   
998.
999.
The aim of this article was to compare plasma estrone sulfate (E1SO4), clinical biochemistry, and milk yield of dairy cows carrying a female fetus from a bull (BULL) or from its clone (CLONE), evaluating also the relationship between the former variables and the birth weight of the newborn. Sixteen recipient dairy Friesian heifers (10 BULL and 7 CLONE) received a female embryo, obtained by in vitro embryo production and sexing by polymerase chain reaction with the semen of the BULL or the CLONE. Blood samples on all cows were obtained before feed distribution in the morning from jugular vein from 4 weeks before to 4 weeks after calving, to be analyzed for metabolic profile. The samples from late gestation were also analyzed for E1SO4 concentration. To separately assess the effect of calf birth weight (CBW), data were categorized as follows: low (<39 kg; BWT-A), mid (39–46 kg; BWT-B), and high (>46 kg; BWT-C). The plasma concentrations of β-hydroxybutyric acid (BHB, P = 0.019), Na (P = 0.002), Cl (P = 0.026), strong cation–anion balance (P = 0.020), total bilirubin (P = 0.054), and α1-globulin (P = 0.044) were higher in prepartum BULL recipients than those in CLONE, whereas BHB (P = 0.021) and Mg (P = 0.090) were higher in postpartum BULL recipients, while no differences were recorded in the remaining postpartum parameters. The CBW class had significant interaction with week of gestation on antepartum plasma estrone sulfate (P = 0.021), whereas CBW per se affected antepartum plasma BHB (P = 0.021), and nonesterified fatty acids (NEFA; P = 0.011) being higher in BWT-C which also had the lower NEFA concentration during postpartum. Milk yield was unaffected by the sire used, both for quantitative and qualitative aspects. Cows carrying heavier fetus (BWT-C) had a different lactation affected by month compared with the other 2 CBW groups. From these results, there were no differences between BULL and CLONE recipients. Estrone sulfate, BHB, and NEFA may be used to predict CBW and provide different nutritional management during gestation.  相似文献   
1000.
Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3–4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein–brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号