首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2566篇
  免费   178篇
  2023年   9篇
  2022年   18篇
  2021年   33篇
  2020年   27篇
  2019年   25篇
  2018年   50篇
  2017年   47篇
  2016年   75篇
  2015年   103篇
  2014年   120篇
  2013年   188篇
  2012年   191篇
  2011年   175篇
  2010年   136篇
  2009年   126篇
  2008年   172篇
  2007年   160篇
  2006年   160篇
  2005年   126篇
  2004年   152篇
  2003年   116篇
  2002年   114篇
  2001年   18篇
  2000年   12篇
  1999年   32篇
  1998年   28篇
  1997年   21篇
  1996年   20篇
  1995年   30篇
  1994年   18篇
  1993年   23篇
  1992年   22篇
  1991年   18篇
  1990年   25篇
  1989年   16篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   11篇
  1981年   16篇
  1980年   8篇
  1979年   5篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1974年   12篇
  1973年   4篇
排序方式: 共有2744条查询结果,搜索用时 15 毫秒
961.
962.
The aim of this article was to compare plasma estrone sulfate (E1SO4), clinical biochemistry, and milk yield of dairy cows carrying a female fetus from a bull (BULL) or from its clone (CLONE), evaluating also the relationship between the former variables and the birth weight of the newborn. Sixteen recipient dairy Friesian heifers (10 BULL and 7 CLONE) received a female embryo, obtained by in vitro embryo production and sexing by polymerase chain reaction with the semen of the BULL or the CLONE. Blood samples on all cows were obtained before feed distribution in the morning from jugular vein from 4 weeks before to 4 weeks after calving, to be analyzed for metabolic profile. The samples from late gestation were also analyzed for E1SO4 concentration. To separately assess the effect of calf birth weight (CBW), data were categorized as follows: low (<39 kg; BWT-A), mid (39–46 kg; BWT-B), and high (>46 kg; BWT-C). The plasma concentrations of β-hydroxybutyric acid (BHB, P = 0.019), Na (P = 0.002), Cl (P = 0.026), strong cation–anion balance (P = 0.020), total bilirubin (P = 0.054), and α1-globulin (P = 0.044) were higher in prepartum BULL recipients than those in CLONE, whereas BHB (P = 0.021) and Mg (P = 0.090) were higher in postpartum BULL recipients, while no differences were recorded in the remaining postpartum parameters. The CBW class had significant interaction with week of gestation on antepartum plasma estrone sulfate (P = 0.021), whereas CBW per se affected antepartum plasma BHB (P = 0.021), and nonesterified fatty acids (NEFA; P = 0.011) being higher in BWT-C which also had the lower NEFA concentration during postpartum. Milk yield was unaffected by the sire used, both for quantitative and qualitative aspects. Cows carrying heavier fetus (BWT-C) had a different lactation affected by month compared with the other 2 CBW groups. From these results, there were no differences between BULL and CLONE recipients. Estrone sulfate, BHB, and NEFA may be used to predict CBW and provide different nutritional management during gestation.  相似文献   
963.
Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3–4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein–brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.  相似文献   
964.

Background

Metal ions such as copper or zinc are involved in the development of neurodegenerative pathologies and metabolic diseases such as diabetes mellitus. Albumin structure and functions are impaired following metal- and glucose-mediated oxidative alterations. The aim of this study was to elucidate effects of Cu(II) and Zn(II) ions on glucose-induced modifications in albumin by focusing on glycation, aggregation, oxidation and functional aspects.

Methods

Aggregation and conformational changes in albumin were monitored by spectroscopy, fluorescence and microscopy techniques. Biochemical assays such as carbonyl, thiol groups, albumin-bound Cu, fructosamine and amine group measurements were used. Cellular assays were used to gain functional information concerning antioxidant activity of oxidized albumins.

Results

Both metals promoted inhibition of albumin glycation associated with an enhanced aggregation and oxidation process. Metal ions gave rise to the formation of β-amyloid type aggregates in albumin exhibiting impaired antioxidant properties and toxic activity to murine microglia cells (BV2). The differential efficiency of both metal ions to inhibit albumin glycation, to promote aggregation and to affect cellular physiology is compared.

Conclusions and general significance

Considering the key role of oxidized protein in pathology complications, glycation-mediated and metal ion-induced impairment of albumin properties might be important parameters to be followed and fought.  相似文献   
965.
Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory β-subunits (β1–4) that modify the channel’s properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and β(1–4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [3H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [3H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1 % of those found in cortical tissues. The β4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of β1 and β2 were low in both these areas although β2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and β4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and β subunit combinations. Channels in the cortex seem to be composed mainly of α subunits and to a lesser degree by α and β4 subunits, whereas in the TG the α + β4 combination seems to prevail (although α and/or α + β2 channels cannot be excluded). In light of the BK channels’ selective control of excitatory transmission and their pharmacological diversity, their effects on primary glutamatergic afferents projecting to TCN represent a potential target for drug therapy of migraines and other types of orofacial pain.  相似文献   
966.
967.

Background

Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.

Results

Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167).

Conclusion

Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/gb-2014-15-8-r70) contains supplementary material, which is available to authorized users.  相似文献   
968.

Introduction

We aimed to replicate a recent study which showed higher genetic risk load at 15 loci in men than in women with systemic lupus erythematosus (SLE). This difference was very significant, and it was interpreted as indicating that men require more genetic susceptibility than women to develop SLE.

Methods

Nineteen SLE-associated loci (thirteen of which are shared with the previous study) were analyzed in 1,457 SLE patients and 1,728 healthy controls of European ancestry. Genetic risk load was calculated as sex-specific sum genetic risk scores (GRSs).

Results

Our results did not replicate those of the previous study at either the level of individual loci or the global level of GRSs. GRSs were larger in women than in men (4.20 ± 1.07 in women vs. 3.27 ± 0.98 in men). This very significant difference (P < 10−16) was more dependent on the six new loci not included in the previous study (59% of the difference) than on the thirteen loci that are shared (the remaining 41%). However, the 13 shared loci also showed a higher genetic risk load in women than in men in our study (P = 6.6 × 10−7), suggesting that heterogeneity of participants, in addition to different loci, contributed to the opposite results.

Conclusion

Our results show the lack of a clear trend toward higher genetic risk in one of the sexes for the analyzed SLE loci. They also highlight several limitations of assessments of genetic risk load, including the possibility of ascertainment bias with loci discovered in studies that have included mainly women.  相似文献   
969.
The in situ Proximity Ligation Assay (PLA) is suited for visualizing protein–protein interactions and post-translational protein modifications in both tissue sections and in vitro cell cultures. Accurate identification and quantification of protein–protein interactions are critical for in vitro cell analysis, especially when studying the dynamic involvement of proteins in various processes, including cell proliferation, differentiation, and apoptosis. Here, we monitored the interactions between protein kinase-Cζ (PKCζ) and Bcl10 protein in untreated and etoposide (VP-16)-treated C4-I cells by means of a new combined morphological approach and validated it by taking stock of our previous proteomic and biochemical work (Chiarini et al. in J Proteome Res 11:3996–4012, 2012). We first analyzed the colocalization of PKCζ and Bcl10 proteins through classical immunofluorescent colocalization analysis. On the basis of these results, we developed a novel imaging approach combining immunofluorescence (IF) techniques with in situ PLA to identify the PKCζ·Bcl10 complexes at the level of a specific subcellular compartment, i.e., the nuclear envelope (NE). By this means, we could show that the amount of PKCζ·Bcl10 complexes localized at the NE of C4-I cells during proliferation or after treatment with VP-16 closely corresponded to our previous purely biochemical results. Hence, the present findings demonstrate that the combination of in situ PLA with classical IF detection is a novel powerful analytical tool allowing to morphologically demonstrate new specific protein–protein interactions at level of subcellular organelles, the complexes functions of which can next be clarified through proteomic/biochemical approaches.  相似文献   
970.
Many of the neurodegenerative diseases that afflict people in later life are associated with the formation of protein aggregates. These so-called “proteinopathies” include Alzheimer’s disease (AD) and Huntington’s disease (HD). The insulin/insulin-like growth factor signalling (IIS) pathway has been proposed to modulate such diseases in model organisms, as well as the general ageing process. In this pathway, insulin-like growth factor binds to insulin-like growth factor receptors, such as the insulin-like growth factor 1 receptor (IGF-1R). Heterozygous deletion of Igf-1r has been shown to lead to increased lifespan in mice. Reducing the activity of this pathway had benefits in a HD C. elegans model, and some of these may be attributed to the expected inhibition of mTOR activity resulting in an increase in autophagy, which would enhance mutant huntingtin clearance. Thus, we tested if heterozygous deletion of Igf-1r would lead to benefits in HD related phenotypes in the mouse. Surprisingly, reducing Igf-1r levels led to some beneficial effects in HD females, but also led to some detrimental effects in HD males. Interestingly, Igf-1r deficiency had no discernible effects on downstream mTOR signalling in HD mice. These results do not support a broad beneficial effect of diminishing the IIS pathway in HD pathology in a mammalian system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号