首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1741篇
  免费   160篇
  国内免费   3篇
  2023年   5篇
  2022年   11篇
  2021年   34篇
  2020年   11篇
  2019年   15篇
  2018年   33篇
  2017年   24篇
  2016年   42篇
  2015年   72篇
  2014年   72篇
  2013年   131篇
  2012年   126篇
  2011年   106篇
  2010年   78篇
  2009年   82篇
  2008年   104篇
  2007年   122篇
  2006年   100篇
  2005年   112篇
  2004年   97篇
  2003年   87篇
  2002年   90篇
  2001年   14篇
  2000年   9篇
  1999年   18篇
  1998年   19篇
  1997年   21篇
  1996年   6篇
  1995年   14篇
  1994年   19篇
  1993年   14篇
  1992年   10篇
  1991年   11篇
  1990年   21篇
  1989年   24篇
  1988年   12篇
  1987年   11篇
  1986年   7篇
  1985年   11篇
  1984年   10篇
  1983年   11篇
  1982年   6篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   8篇
  1968年   4篇
排序方式: 共有1904条查询结果,搜索用时 15 毫秒
131.
Derivatives of the 4-fluorobenzyl dimethylpiperazine-indole class of p38α MAP kinase inhibitors are described. Biological evaluation of these compounds focused on maintaining activity while improving pharmacokinetic (PK) properties. Improved properties were observed for structures bearing substitutions on the benzylic methylene.  相似文献   
132.

Background

Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs.

Methodology/Principal Findings

VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors.

Conclusions/Significance

This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.  相似文献   
133.
134.
Plant cell wall invertases and fructan exohydrolases (FEHs) are very closely related enzymes at the molecular and structural level (family 32 of glycoside hydrolases), but they are functionally different and are believed to fulfill distinct roles in plants. Invertases preferentially hydrolyze the glucose (Glc)-fructose (Fru) linkage in sucrose (Suc), whereas plant FEHs have no invertase activity and only split terminal Fru-Fru linkages in fructans. Recently, the three-dimensional structures of Arabidopsis (Arabidopsis thaliana) cell wall Invertase1 (AtcwINV1) and chicory (Cichorium intybus) 1-FEH IIa were resolved. Until now, it remained unknown which amino acid residues determine whether Suc or fructan is used as a donor substrate in the hydrolysis reaction of the glycosidic bond. In this article, we present site-directed mutagenesis-based data on AtcwINV1 showing that the aspartate (Asp)-239 residue fulfills an important role in both binding and hydrolysis of Suc. Moreover, it was found that the presence of a hydrophobic zone at the rim of the active site is important for optimal and stable binding of Suc. Surprisingly, a D239A mutant acted as a 1-FEH, preferentially degrading 1-kestose, indicating that plant FEHs lacking invertase activity could have evolved from a cell wall invertase-type ancestor by a few mutational changes. In general, family 32 and 68 enzymes containing an Asp-239 functional homolog have Suc as a preferential substrate, whereas enzymes lacking this homolog use fructans as a donor substrate. The presence or absence of such an Asp-239 homolog is proposed as a reliable determinant to discriminate between real invertases and defective invertases/FEHs.  相似文献   
135.
The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared analyses, levels of saponifiable hydroxycinnamates are elevated in bk2 leaves and stems. As Bk2 is highly expressed during early development, well before the onset of the brittle phenotype, we propose that Bk2 functions in a patterning of lignin-cellulosic interactions that maintain organ flexibility rather than having a direct role in cellulose biosynthesis.  相似文献   
136.
The outcome of peripheral T cell activation is thought to be largely determined by the context in which the cognate Ag is initially presented. In this framework, microbial products that can activate APCs via TLRs are considered critical in converting an otherwise tolerogenic context to an immunogenic one. We examine this idea using a model system where naive T cells are stimulated in the periphery by a persistent self Ag. The addition of multiple TLR ligands to this context, acutely or chronically, failed to significantly alter the tolerogenic phenotype in the responding T cells. This contrasts with the ability of such adjuvants to improve T cell responses to soluble peptide immunizations. We reconcile this difference by revealing a hitherto poorly appreciated property of TLR ligands, which extends the duration of soluble Ag presentation in vivo by an additional two to three days. Finally, we could replace the requirement for TLR-mediated APC activation in soluble-Ag-induced T cell expansion and differentiation, by maintaining the Ag depot in vivo using repeated immunizations. These data suggest a novel process by which TLR ligands modulate T cell responses to acute Ags, without disrupting the induction of tolerance to persistent self Ags.  相似文献   
137.
The unique MHC phenotype of the human and nonhuman primate placenta has suggested a potential role in maternal-fetal immune tolerance, pregnancy success, and maternal as well as fetal well-being. In the rhesus monkey (Macaca mulatta) a nonclassical MHC class I molecule, Mamu-AG, is a putative homologue of HLA-G and is hypothesized to play a role in maternal-fetal immune interactions during pregnancy. Rhesus monkeys were passively immunized during the second week after implantation with a mAb against Mamu-AG. Passive immunization altered the growth and vascularization of the fetal placenta, the placental modification of maternal endometrial vessels, the maternal leukocyte response to implantation, and the differentiation of epithelial and stromal cells in the endometrium. These data are the first to demonstrate in vivo the importance of MHC class I molecules expressed on primate trophoblasts in establishing an important environment for pregnancy success through coordinated interactions between endometrial and fetal tissues.  相似文献   
138.
The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.  相似文献   
139.
Field-emission scanning electron microscopy was used to measure wall thicknesses of different cell types in freeze-fractured hypocotyls of Arabidopsis thaliana. Measurements of uronic acid content, wall mass, and wall volume suggest that cell wall biosynthesis in this organ does not always keep pace with, and is not always tightly coupled to, elongation. In light-grown hypocotyls, walls thicken, maintain a constant thickness, or become thinner during elongation, depending upon the cell type and the stage of growth. In light-grown hypocotyls, exogenous gibberellic acid represses the extent of thickening and promotes cell elongation by both wall thinning and increased anisotropy during the early stages of hypocotyl elongation, and by increased wall deposition in the latter stages. Dark-grown hypocotyls, in the 48 h period between cold imbibition and seedling emergence, deposit very thick walls that subsequently thin in a narrow developmental window as the hypocotyl rapidly elongates. The rate of wall deposition is then maintained and keeps pace with cell elongation. The outer epidermal wall is always the thickest ( approximately 1 mum) whereas the thinnest walls, about 50 nm, are found in inner cell layers. It is concluded that control of wall thickness in different cell types is tightly regulated during hypocotyl development, and that wall deposition and cell elongation are not invariably coupled.  相似文献   
140.
Transformation and cancer growth are regulated by the coordinate actions of oncogenes and tumor suppressors. Here, we show that the novel E3 ubiquitin ligase HACE1 is frequently downregulated in human tumors and maps to a region of chromosome 6q21 implicated in multiple human cancers. Genetic inactivation of HACE1 in mice results in the development of spontaneous, late-onset cancer. A second hit from either environmental triggers or genetic heterozygosity of another tumor suppressor, p53, markedly increased tumor incidence in a Hace1-deficient background. Re-expression of HACE1 in human tumor cells directly abrogates in vitro and in vivo tumor growth, whereas downregulation of HACE1 via siRNA allows non-tumorigenic human cells to form tumors in vivo. Mechanistically, the tumor-suppressor function of HACE1 is dependent on its E3 ligase activity and HACE1 controls adhesion-dependent growth and cell cycle progression during cell stress through degradation of cyclin D1. Thus, HACE1 is a candidate chromosome 6q21 tumor-suppressor gene involved in multiple cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号