首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1731篇
  免费   160篇
  国内免费   3篇
  2022年   11篇
  2021年   34篇
  2020年   11篇
  2019年   15篇
  2018年   33篇
  2017年   24篇
  2016年   42篇
  2015年   72篇
  2014年   72篇
  2013年   130篇
  2012年   125篇
  2011年   105篇
  2010年   78篇
  2009年   82篇
  2008年   104篇
  2007年   122篇
  2006年   100篇
  2005年   112篇
  2004年   97篇
  2003年   87篇
  2002年   90篇
  2001年   14篇
  2000年   9篇
  1999年   18篇
  1998年   19篇
  1997年   21篇
  1996年   6篇
  1995年   14篇
  1994年   19篇
  1993年   13篇
  1992年   10篇
  1991年   11篇
  1990年   21篇
  1989年   22篇
  1988年   12篇
  1987年   11篇
  1986年   6篇
  1985年   11篇
  1984年   10篇
  1983年   11篇
  1982年   6篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   8篇
  1970年   4篇
  1968年   4篇
排序方式: 共有1894条查询结果,搜索用时 15 毫秒
81.
82.
Books Received     

Publications Received

Books Received  相似文献   
83.
Plants, animals and some fungi undergo processes of cell specialization such that specific groups of cells are adapted to carry out particular functions. One of the more remarkable examples of cellular development in higher plants is the formation of water-conducting cells that are capable of supporting a column of water from the roots to tens of metres in the air for some trees. The Zinnia mesophyll cell system is a remarkable tool with which to study this entire developmental pathway in vitro. We have recently applied an RNA fingerprinting technology, to allow the detection of DNA fragments derived from RNA using cDNA synthesis and subsequent PCR-amplified fragment length polymorphisms (cDNA-AFLP), to systematically characterize hundreds of the genes involved in the process of tracheary element formation. Building hoops of secondary wall material is the key structural event in forming functional tracheary elements and we have identified over 50 partial sequences related to cell walls out of 600 differentially expressed cDNA fragments. The Zinnia system is an engine of gene discovery which is allowing us to identify and characterize candidate genes involved in cell wall biosynthesis and assembly.  相似文献   
84.
We used anexercise paradigm with repeated bouts of heavy forearm exercise to testthe hypothesis that alterations in local acid-base environment thatremain after the first exercise result in greater blood flow andO2 delivery at the onset of the second bout of exercise.Two bouts of handgrip exercise at 75% peak workload were performed for5 min, separated by 5 min of recovery. We continuously measured bloodflow using Doppler ultrasound and sampled venous blood forO2 content, PCO2, pH, and lactateand potassium concentrations, and we calculated muscle O2uptake (O2). Forearm blood flow waselevated before the second exercise compared with the first andremained higher during the first 30 s of exercise (234 ± 18 vs. 187 ± 4 ml/min, P < 0.05). Flow was notdifferent at 5 min. Arteriovenous O2 content difference waslower before the second bout (4.6 ± 0.9 vs. 7.2 ± 0.7 mlO2/dl) and higher by 30 s of exercise(11.2 ± 0.7 vs. 10.8 ± 0.7 ml O2/dl,P < 0.05). Muscle O2was unchanged before the start of exercise but was elevated during thefirst 30 s of the transition to the second exercise bout(26.0 ± 2.1 vs. 20.0 ± 0.9 ml/min, P < 0.05). Changes in venous blood PCO2, pH, andlactate concentration were consistent with reduced reliance onanaerobic glycolysis at the onset of the second exercise bout. Thesedata show that limitations of muscle blood flow can restrict theadaptation of oxidative metabolism at the onset of heavy muscular exertion.

  相似文献   
85.
The suitability of a species identification technique based on PCR analysis of 16S-23S rRNA spacer region (SR) polymorphism for human intestinal Clostridium species was evaluated. This SR-PCR based technique is highly reproducible and successfully differentiated the strains tested, which included 17 ATCC type strains of Clostridium and 152 human stool Clostridium isolates, at the species or intraspecies level. Ninety-eight of 152 stool isolates, including C. bifermentans, C. butyricum, C. cadaveris, C. orbiscindens, C. paraputrificum, C. pefringens, C. ramosum, C. scindens, C. spiroforme, C. symbiosum and C. tertium, were identified to species level by SR-PCR patterns that were identical to those of their corresponding ATCC type strains. The other 54 stool isolates distributed among ten SR-PCR patterns that are unique and possibly represent ten novel Clostridium species or subspecies. The species identification obtained by SR-PCR pattern analysis completely agreed with that obtained by 16S rRNA sequencing, and led to identification that clearly differed from that obtained by cellular fatty acid analysis for 23/152 strains (15%). These results indicate that SR-PCR provides an accurate and rapid molecular method for the identification of human intestinal Clostridium species.  相似文献   
86.
Fanconi anemia (FA), a genetic disorder predisposing to aplastic anemia and cancer, is characterized by hypersensitivity to DNA-damaging agents and oxidative stress. Five of the cloned FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG) appear to be involved in a common functional pathway that is required for the monoubiquitination of a sixth gene product, FANCD2. Here, we report that FANCA associates with the IkappaB kinase (IKK) signalsome via interaction with IKK2. Components of the FANCA complex undergo rapid, stimulus-dependent changes in phosphorylation, which are blocked by kinase-inactive IKK2 (IKK2 K > M). When exposed to mitomycin C, cells expressing IKK2 K > M develop a cell cycle abnormality characteristic of FA. Thus, FANCA may function to recruit IKK2, thus providing the cell a means of rapidly responding to stress.  相似文献   
87.
88.
We report a female with Prader-Willi syndrome and hemihypertrophy. We discuss the possibility of an undetected mosaicism for trisomy 15 explaining this unusual feature.  相似文献   
89.
90.
The RAVE complex is essential for stable assembly of the yeast V-ATPase   总被引:6,自引:0,他引:6  
Vacuolar proton-translocating ATPases are composed of a peripheral complex, V(1), attached to an integral membrane complex, V(o). Association of the two complexes is essential for ATP-driven proton transport and is regulated post-translationally in response to glucose concentration. A new complex, RAVE, was recently isolated and implicated in glucose-dependent reassembly of V-ATPase complexes that had disassembled in response to glucose deprivation (Seol, J. H., Shevchenko, A., and Deshaies, R. J. (2001) Nat. Cell Biol. 3, 384-391). Here, we provide evidence supporting a role for RAVE in reassembly of the V-ATPase but also demonstrate an essential role in V-ATPase assembly under other conditions. The RAVE complex associates reversibly with V(1) complexes released from the membrane by glucose deprivation but binds constitutively to cytosolic V(1) sectors in a mutant lacking V(o) sectors. V-ATPase complexes from cells lacking RAVE subunits show serious structural and functional defects even in glucose-grown cells or in combination with a mutation that blocks disassembly of the V-ATPase. RAVE small middle dotV(1) interactions are specifically disrupted in cells lacking V(1) subunits E or G, suggesting a direct involvement for these subunits in interaction of the two complexes. Skp1p, a RAVE subunit involved in many different signal transduction pathways, binds stably to other RAVE subunits under conditions that alter RAVE small middle dotV(1) binding; thus, Skp1p recruitment to the RAVE complex does not appear to provide a signal for V-ATPase assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号