首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   625篇
  免费   43篇
  2023年   3篇
  2022年   7篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   14篇
  2017年   9篇
  2016年   10篇
  2015年   23篇
  2014年   39篇
  2013年   53篇
  2012年   42篇
  2011年   55篇
  2010年   23篇
  2009年   26篇
  2008年   40篇
  2007年   30篇
  2006年   38篇
  2005年   27篇
  2004年   42篇
  2003年   32篇
  2002年   33篇
  2001年   11篇
  2000年   10篇
  1999年   6篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1989年   9篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有668条查询结果,搜索用时 968 毫秒
221.
PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (ΔKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the ΔKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-ΔKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Δpnp mutation at 18 °C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.  相似文献   
222.
The Agrobacterium rhizogenes oncogene rolB mimics the effects of auxin in that it increases the sensitivity of transformed cells to this hormone. Here we isolated a tobacco gene, ROX1, acting downstream of rolB. We show that plants with reduced levels of ROX1 mRNA, due to the expression of a 35S-driven ROX1-antisense construct, have flowers with stamens and pistils longer than normal because of an increased number of cells. Localized expression of rolB in anthers results in overexpression of ROX1 and reduced growth of stamens, due to a reduced number of cells. In addition, the longer stamens of antisense plants show a delayed xylem differentiation in the lateral bundles, primarily of the junction region between anther and filament, while the shorter stamens of ROX1-overexpressing plants show a precocious differentiation of xylem cells in the same tissues. Expression of ROX1 in stamens peaks at early stages of stamen growth, and ROX1 mRNA is localized mostly in anther procambial cells. The sequence of ROX1 shares a conserved element with a number of plant genes, including TED3, which is involved in xylem differentiation. These results point to a role of ROX1 in the balance between proliferation of procambial cells and xylem differentiation during stamen development.  相似文献   
223.
Four stereoisomers of (2S)-2-(2'-phosphono-3'-phenylcyclopropyl)glycine were synthesized by a stereocontrolled synthetic procedure and evaluated as mGluRs ligands. The (2S,1'R,2'S,3'R)-isomer (PPCG-2) showed to be a group III mGluRs selective ligand endowed with a moderate potency as mGluR4/mGluR6 agonist.  相似文献   
224.
This study reports the influence of halogens on fluorescence properties of the Aequorea victoria Green Fluorescent Protein variant S65T/T203Y (E(2)GFP). Halide binding forms a specific nonfluorescent complex generating a substantial drop of the fluorescence via static quenching. Spectroscopic analysis under different solution conditions reveals high halogen affinity, which is strongly dependent on the pH. This evidences the presence in E(2)GFP of interacting binding sites for halide ions and for protons. Thermodynamic link and cooperative interaction are assessed demonstrating that binding of one halide ion is associated with the binding of one proton in a cooperative fashion with the formation, in the pH range 4.5-10, of a single fully protonated E(2)GFP.halogen complex. To resolve the structural determinants of E(2)GFP sensitivity to halogens, high-resolution crystallographic structures were obtained for the halide-free and I(-), Br(-), and Cl(-) bound E(2)GFP. Remarkably the first high-resolution (1.4 A) crystallographic structure of a chloride-bound GFP is reported. The chloride ion occupies a specific and unique binding pocket in direct contact (3.4 A) with the chromophore imidazolidinone aromatic ring. Unanticipated flexibility, strongly modulated by halide ion interactions, is observed in the region surrounding the chromophore. Furthermore molecular dynamics simulations identified E222 residue (along with the chromophore Y66 residue) being in the protonated state when E(2)GFP.halogen complex is formed. The impact of these results on high-sensitivity biosensor design will be discussed.  相似文献   
225.
Velocardiofacial syndrome, DiGeorge syndrome, and conotruncal anomaly face syndrome, now collectively referred to as 22q11deletion syndrome (22q11DS) are caused by microdeletions on chromosome 22q11. The great majority ( approximately 90%) of these deletions are 3 Mb in size. The remaining deleted patients have nested break-points resulting in overlapping regions of hemizygosity. Diagnostic testing for the disorder is traditionally done by fluorescent in situ hybridization (FISH) using probes located in the proximal half of the region common to all deletions. We developed a novel, high-resolution single-nucleotide polymorphism (SNP) genotyping assay to detect 22q11 deletions. We validated this assay using DNA from 110 nondeleted controls and 77 patients with 22q11DS that had previously been tested by FISH. The assay was 100% sensitive (all deletions were correctly identified). Our assay was also able to detect a case of segmental uniparental disomy at 22q11 that was not detected by the FISH assay. We used Bayesian networks to identify a set of 17 SNPs that are sufficient to ascertain unambiguously the deletion status of 22q11DS patients. Our SNP based assay is a highly accurate, sensitive, and specific method for the diagnosis of 22q11 deletion syndrome.  相似文献   
226.
The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0–5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18–20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed.  相似文献   
227.
Glycine max is one of the major sources of phytochemicals, in particular of isoflavones, a class of phytoestrogens with ascertained beneficial effects on human health. In the present study, in vitro callus production from soybean hypocotyl seedling explants and cell suspensions were optimized. Time-courses having 20, 40 and 60 g/L of initial cell inoculum were performed to determine the concentration most suitable for isoflavone production. The amount of total polyphenols and total flavonoids as well as the antioxidant capacity of both cell and culture media fractions were measured by means of spectrophotometric methods. The levels of aglycone and glycosylated isoflavones (didzein, genistein, glycitein, didzin, genistin, glycitin), as well as of ferulic acid, vanillic acid and vanillin, were determined by HPLC–DAD. On average, 93.5 % of the total (cells plus media) isoflavones in soybean cell suspensions were detected as aglycones. Concentrated cell cultures as well as industrial soybean seed extracts were enzymatically hydrolyzed to release the aglycones and their metabolic profiles were analysed by HPLC–DAD. In contrast to cell suspensions, in undigested seed extract the aglycon form represented only 16.8 % of the total isoflavones amount. After enzymatic treatment, the antioxidant capacity increased by 30 and 33 %, respectively, in concentrated cell and seed extracts, demonstrating the presence of a larger amount of bioactive metabolites after digestion. At the present extraction conditions, soybean concentrated cell suspensions yielded 5.8-fold more total isoflavones (mostly in the free form) than seed extracts, leading to hypothesise their possible use as ingredients for cosmetic and nutraceutical applications.  相似文献   
228.
229.
Stress responses depend on the correct regulation of gene expression. The discovery that abiotic as well as biotic stresses can regulate miRNA levels, coupled with the identification and functional analyses of stress-associated genes as miRNA targets, provided clues about the vital role that several miRNAs may play in modulating plant resistance to stresses. Nitrogen availability seriously affects crops productivity and environment and the understanding of the miRNA-guided stress regulatory networks should provide new tools for the genetic improvement of nitrogen use efficiency of crops. A recent study revealed the potential role of a number of nitrate-responsive miRNAs in the maize adaptation to nitrate fluctuations. In particular, results obtained suggested that a nitrate depletion might regulate the expression of genes involved in the starvation adaptive response, by affecting the spatio-temporal expression patterns of specific miRNAs.  相似文献   
230.
Several ethical considerations emerge when conducting research with memory-impaired individuals, including the individuals' ability to comprehend and accurately respond to survey questions. However, little empirical research exists on how to format surveys to decrease cognitive demands, thereby allowing researchers to more accurately survey this population. The current study presents data from structured interviews with 125 community-residing, memory-impaired older adults about their illness experience. The interview contained 14 scales varying in subjectivity, directionality, and response choice content. While objectivity did not affect participants' ability to use the full range of responses, participants with greater cognitive impairment tended to use simpler, dichotomous response categories, especially when questions had bidirectional response choices. Results suggest that memory-impaired individuals can participate in survey research, that such surveys should contain unidirectional frequency/amount items when possible, and that not all memory-impaired individuals will have difficulty completing surveys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号