首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   6篇
  157篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   9篇
  2003年   2篇
  2002年   6篇
  2001年   4篇
  2000年   11篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   9篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
1.
A rapid, sensitive, and economical chemical analysis of the triazole, gibberellin-inhibitor, paclobutrazol (PP333, [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4 triazol-1-yl) pentan-3-ol]) was sought, featuring high-performance liquid chromatography (HPLC) as the final quantitation step. Three C18-reverse phase columns (conventional, 250×4.6 mm; cartridge type, 125×4.6 mm; and minicolumn, 33×4.6 mm) were evaluated for their performance in HPLC separation and quantitation of PP333 applied to soil and plant foliage. The 125-mm Whatman Partisil 5 ODS-3 cartridge column was superior to the standard 250-mm DuPont Zorbax ODS unit, and provided enhanced resolution and reduced solvent consumption, analysis time, and cost. A Perkin-Elmer Pecosphere 3×3C-C18 cartridge system was also superior to the 125-mm column with respect to these parameters. Although this minicolumn necessitated an additional purification step prior to HPLC analysis, its exceptionally fast analysis time and recovery period coupled with a high degree of sensitivity rendered it the most superior unit. This HPLC technology provided an efficient means of assaying for PP333 in large-scale experiments dealing with the chemical's absorption, translocation, and physiological response.  相似文献   
2.
The influence of an aromatic side chain at position 82 of yeast iso-1-cytochrome c on the kinetics of its electron transfer reactions has been investigated using laser flash photolysis methods to compare a series of site-specific mutant cytochromes in their reduction by free flavin semiquinone and in electron transfer from reduced cytochrome to bovine cytochrome c oxidase. Although small (approximately 10%) but significant differences are observed between some of the mutants (S82, Y82, I82) and wild-type (F82) or G82 cytochrome in the second-order rate constant for reduction by lumiflavin semiquinone, these do not correlate with side-chain aromaticity. In the reaction between the ferrocytochromes and cytochrome c oxidase, significantly larger deviations from exponentiality are found for those mutants having aliphatic residues at position 82 than for wild type or Y82. We interpret the nonexponential behavior in terms of multiple orientations of the cytochromes within the oxidase binding site; the extent to which this occurs is apparently influenced by the character of the residue at position 82. However, a comparison of the average rate constants for electron transfer to cytochrome oxidase for the various mutants reveals that all are closely comparable to WT, except for I82 which is significantly slower (approximately threefold). These results, combined with those obtained previously from steady-state kinetic and thermodynamic measurements, suggest that the observed differences among the mutants are due to alterations in the mode of binding of the cytochrome to the oxidase, rather than to a specific requirement for the presence of an aromatic group at position 82.  相似文献   
3.
We have analyzed the stability of the cytochrome c-cytochrome b5 and cytochrome c-cytochrome c oxidase complexes as a function of solvent stress. High concentrations of glycerol were used to displace the two equilibria. Glycerol promotes complex formation between cytochrome c and cytochrome b5 but inhibits that between cytochrome c and cytochrome c oxidase. The results with cytochrome b5 and cytochrome c were expected; the association of this complex is largely entropy driven. Our interpretation is that the cytochrome c-cytochrome b5 complex excludes water. The results with the cytochrome c oxidase and cytochrome c couple were not expected. We interpret them to mean that either glycerol is binding to the oxidase, thereby displacing the cytochrome c, or that water is required at this protein-protein interface. A requirement for substantial quantities of water at the interface of some protein complexes is logical but has been reported only once.  相似文献   
4.
5.
M R Mauk  L S Reid  A G Mauk 《Biochemistry》1982,21(8):1843-1846
The interaction between cytochrome c and the tryptic fragment of cytochrome b5 has been found to produce a difference spectrum in the Soret region with a maximum absorbance at 416 nm. The intensity of this difference has been used to determine the stoichiometry of complex formation and the stability of the complex formed. At pH 7.0 [25 degrees C (phosphate), mu = 0.01 M], the two proteins were found to form a 1:1 complex with an association constant, KA, of 8(3) x 10(4) M-1. The stability of the complex was found to be strongly dependent on ionic strength with KA increasing to 4(3) x 10(6) M-1 at mu = 0.001 M [25 degrees C, pH 7.0 (phosphate)]. Analysis of the dependence of KA on pH from pH 6.5 to 8 demonstrated that this complex is maximally stable between pH 7 and 8 or about midway between the isoelectric points of the two proteins. Analysis of the temperature dependence of KA revealed that formation of the complex between the two proteins is largely entropic in origin with delta Ho = 1 +/- 3 kcal/mol and delta So = 33 +/- 11 eu [pH 7.0 (phosphate), mu = 0.001 M]. This result may be explained either by the model of Clothia and Janin [Clothia, C., & Janin, J. (1975) Nature (London) 256, 705] in terms of extensive solvent reorganization upon complexation or by the model of Ross and Subramanian [Ross, P. D., & Subramanian, S. (1981) Biochemistry 20, 3096] in which the negative enthalpic and entropic contributions of short-range protein-protein interactions are offset by proton release.  相似文献   
6.
Recombinant cytochrome c peroxidase isolated from Escherichia coli has recently been reported to exhibit an abnormal electronic absorption spectrum that is converted to the normal spectrum after conformational "annealing" of the recombinant enzyme by passage over a cytochrome c affinity column. The current report provides evidence that the abnormal spectrum observed in some preparations of recombinant cytochrome c peroxidase arises from the presence of contaminant, damaged forms cytochrome c peroxidase with altered spectra. Removal of these contaminant forms produces a major cytochrome c peroxidase fraction with a normal spectrum. We conclude that elution of recombinant cytochrome c peroxidase over a cytochrome c affinity column does not produce normal enzyme through conformational "annealing" but that it produces purified enzyme through removal of contaminants.  相似文献   
7.
Amino acid replacements of an aromatic residue, Trp-51, which is in contact with the heme of yeast cytochrome c peroxidase have a number of significant effects on the kinetics and coordination state of the enzyme. Six mutants at this site (W51F, W51M, W51T, W51C, W51A, and W51G) were examined. Optical and EPR spectra show that each of these mutations introduces a shift from the 5-coordinate to 6-coordinate form, and slightly increases the asymmetry of the heme ligand field. Conversion from a 6-coordinate high-spin form at pH 5 to a 6-coordinate low-spin form at pH 7 is observed for several of the variants (W51F, W51T, and W51A), while W51G and W51C appear as predominantly low-spin species between pH 5 and 7. Addition of 50% glycerol prevents the facile conversion to the low-spin conformation for W51F, W51T, and W51A, and only W51F can be stabilized in a 5-coordinate configuration by glycerol. For the oxidation of cytochrome c by H2O2, three of the variants (W51F, W51M, and W51T) exhibit values of kcat(app) that are greater than for the wild-type enzyme, while the other mutations give decreased rates of enzyme turnover. Unlike the wild-type enzyme, which functions more efficiently with cytochrome c from yeast than with the horse heart protein, the mutant W51F does not show a preference for substrate from its native organism. The three mutants which exhibit increased values of kcat(app) show a pH optimum at 6.8 compared with that of 5.25 for the wild-type enzyme when measured with horse heart cytochrome c. This shift in pH optimum is not observed with yeast cytochrome c. Construction of single and multiple mutations at Trp-51, Ile-53, and Gly-152 shows that these kinetic properties are not due to natural amino acid variations observed at these sites. Pre-steady-state kinetics show that the bimolecular rate constant for the fast phase of the reaction of the enzyme with H2O2 is only slightly decreased from 3.03 (0.09) X 10(7) to 2.2 (0.1) X 10(7) M-1 s-1 for W51F and to 1.5 (0.1) X 10(7) M-1 s-1 for W51A. The slow phase of the reaction (4.9 s-1) which contributes approximately 30% to the amplitude of the change for the wild-type enzyme is not observed for W51F or W51A.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
8.
A gene coding for lipase-solubilized bovine liver microsomal cytochrome b5 has been synthesized, expressed in Escherichia coli, and mutated at functionally critical residues. Characterization of the recombinant protein revealed that it has a reduction potential that is approximately 17 mV lower than that of authentic wild-type protein at pH 7 (25 degrees C). Structural studies determined that the recombinant protein differed in sequence from authentic wild-type cytochrome b5 owing to three errors in amidation status in the published sequence for the protein on which the gene synthesis was based. The structural origin of the lower reduction potential exhibited by the triple mutant has been investigated through X-ray crystallographic determination of the three-dimensional structure of this protein and is attributed to the presence of Asp-57 within 3.3 A of heme vinyl-4 in the mutant. In addition, the model developed by Argos and Mathews [Argos, P., & Mathews, F.S. (1975) J. Biol. Chem. 250, 747] for the change in cytochrome b5 oxidation state has been studied through mutation of Ser-64 to Ala. In this model, Ser-64 is postulated to stabilize the oxidized protein through H-bonding interactions with heme propionate-7 that orients this propionate group 6.2 A from the heme iron. Spectroelectrochemical studies of a mutant in which Ser-64 has been changed to an alanyl residue demonstrate that this protein has a reduction potential that is 7 mV lower than that of the wild-type protein; moreover, conversion of the heme propionate groups to the corresponding methyl esters increases the potential by 67 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
The interaction between horse cytochrome c and the tryptic fragment of bovine liver microsomal cytochrome b5 in the absence and presence of [Cr(ethylenediamine)3]Cl3 was studied by 1H NMR spectroscopy. The protein-protein interaction region on cytochrome b5 was found to be different from the [Cr(en)3]3+-binding region. The solvent-exposed propionate-bearing edge of the haem of cytochrome b5 is accessible to [Cr(en)3]3+ in the interprotein complex.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号