首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   16篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   12篇
  2014年   14篇
  2013年   15篇
  2012年   15篇
  2011年   7篇
  2010年   8篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  1998年   6篇
  1996年   2篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
  1969年   1篇
  1960年   1篇
  1958年   1篇
  1940年   1篇
  1936年   1篇
  1934年   1篇
  1932年   2篇
  1930年   1篇
  1928年   3篇
  1923年   2篇
  1920年   1篇
  1918年   2篇
  1913年   2篇
  1905年   1篇
  1902年   1篇
  1899年   1篇
  1897年   1篇
排序方式: 共有214条查询结果,搜索用时 234 毫秒
91.
Cyanosis     
  相似文献   
92.
93.
94.
Isolation and biochemical characterization of goldfish retinal photoreceptor outer segment membranes are described. The lipid fraction is composed primarily of phospholipids (68 mol%) with substantial amounts of neutral lipids (32 mol%). Sterols account for only about 2 wt% of the membranes (about 9 mol% of the total lipids). The phospholipid class composition and fatty acid composition are similar to those of other vertebrate photoreceptor membranes. Two novel findings were the high levels of free fatty acids (21 mol% of the total lipids, primarily palmitic and docosahexaenoic acids) and the presence of relatively significant amounts of a C-32 diacylglycerol molecular species.  相似文献   
95.
96.

Background

We have previously shown that transforming growth factor-beta (TGF-beta) impairs glucocorticoid (GC) function in pulmonary epithelial cell-lines. However, the signalling cascade leading to this impairment is unknown. In the present study, we provide the first evidence that TGF-beta impairs GC action in differentiated primary air-liquid interface (ALI) human bronchial epithelial cells (HBECs). Using the BEAS-2B bronchial epithelial cell line, we also present a systematic examination of the known pathways activated by TGF-beta, in order to ascertain the molecular mechanism through which TGF-beta impairs epithelial GC action.

Methods

GC transactivation was measured using a Glucocorticoid Response Element (GRE)–Secreted embryonic alkaline phosphatase (SEAP) reporter and measuring GC-inducible gene expression by qRT-PCR. GC transrepression was measured by examining GC regulation of pro-inflammatory mediators. TGF-beta signalling pathways were investigated using siRNA and small molecule kinase inhibitors. GRα level, phosphorylation and sub-cellular localisation were determined by western blotting, immunocytochemistry and localisation of GRα–Yellow Fluorescent Protein (YFP). Data are presented as the mean ± SEM for n independent experiments in cell lines, or for experiments on primary HBEC cells from n individual donors. All data were statistically analysed using GraphPad Prism 5.0 (Graphpad, San Diego, CA). In most cases, two-way analyses of variance (ANOVA) with Bonferroni post-hoc tests were used to analyse the data. In all cases, P <0.05 was considered to be statistically significant.

Results

TGF-beta impaired Glucocorticoid Response Element (GRE) activation and the GC induction of several anti-inflammatory genes, but did not broadly impair the regulation of pro-inflammatory gene expression in A549 and BEAS-2B cell lines. TGF-beta-impairment of GC transactivation was also observed in differentiated primary HBECs. The TGF-beta receptor (ALK5) inhibitor SB431541 fully prevented the GC transactivation impairment in the BEAS-2B cell line. However, neither inhibitors of the known downstream non-canonical signalling pathways, nor knocking down Smad4 by siRNA prevented the TGF-beta impairment of GC activity.

Conclusions

Our results indicate that TGF-beta profoundly impairs GC transactivation in bronchial epithelial cells through activating ALK5, but not through known non-canonical pathways, nor through Smad4-dependent signalling, suggesting that TGF-beta may impair GC action through a novel non-canonical signalling mechanism.  相似文献   
97.
BackgroundIt has been suggested that increased fatigue of neck muscles could be related to neck pain. However, studies on the matter present contradicting results which could be explained by the different test positions used.PurposeThe purpose of this study was to investigate the influence of test position on muscle fatigue of neck flexor and extensor muscles in healthy controls.MethodsTwenty-five women without neck pain sustained neck flexion and neck extension isometric contractions at 25% and 75% of their maximal voluntary contraction (MVC) in two test positions: sitting and supine lying. Using surface electromyography, the change over time of the median frequency of the power spectrum (MDF slope) of the myoelectric signal of the sternocleidomastoid and splenius capitis muscles was measured and compared between both positions.ResultsAt 75% MVC, splenius capitis muscles presented higher fatigue in lying compared to sitting, while sternocleidomastoid demonstrated no difference between positions. No statistically significant effect of test position was found at 25% MVC for both sternocleidomastoid and splenius capitis muscles as they generally did not present myoelectric manifestations of fatigue.ConclusionThese results underline the need to standardise the test position when investigating neck muscle fatigue, especially for neck extensors at high loads.  相似文献   
98.
99.
Serum and glucocorticoid-regulated kinases (SGKs) form a family of serine/threonine protein kinases that exhibit structural and sequence similarity to the protein kinase B (PKB)/Akt family. The major difference between these two families is the absence of a lipid-binding, pleckstrin homology domain in the SGKs. Despite the absence of the pleckstrin homology domain, activation of the three human isoforms is, like PKB, dependent upon the phosphatidylinositol 3'-kinase (PI3K) pathway that is induced by growth factors and mitogens. Full-length SGK3 contains a complete Phox homology (PX) domain that targets the protein to endosomes. Both a functional PX domain and PI3K activation are necessary for phosphorylation of SGK3 at two regulatory sites (Thr-320 and Ser-486) and subsequent induction of kinase activity. PDK1 phosphorylates endosome-associated SGK3 at Thr-320, whereas diversion of SGK3 to the plasma membrane, where PDK1 normally activates PKB, interferes with PDK1 phosphorylation of SGK3. A chimeric protein in which the carboxyl-terminal hydrophobic motif (HM) of SGK3 has been exchanged for the HM of PRK2 is constitutively active. Finally, we demonstrate that SGK3 activation becomes PX domain-independent once the HM is phosphorylated. Taken together, these data indicate that the targeting of SGK3 to endosomes, mediated by its PX domain, is essential for proper SGK3 activation, likely due to co-localization of SGK3 with an endosomal, PI3K-dependent and staurosporine-sensitive HM kinase.  相似文献   
100.
The phosphatidylinositol 3' kinase (PI3K)-signaling pathway plays a critical role in a variety of cellular responses such as modulation of cell survival, glucose homeostasis, cell division, and cell growth. PI3K generates important lipid second messengers-phosphatidylinositides that are phosphorylated at the 3' position of their inositol ring head-group. These membrane restricted lipids act by binding with high affinity to specific protein domains such as the pleckstrin homology (PH) domain. Effectors of PI3K include molecules that harbor such domains such as phosphoinositide-dependent kinase (PDK1) and protein kinase B (PKB), also termed Akt. The mammalian genome encodes three different PKB genes (alpha, beta, and gamma; Akt1, 2, and 3, respectively) and each is an attractive target for therapeutic intervention in diseases such as glioblastoma and breast cancer. A second family of three protein kinases, termed serum and glucocorticoid-regulated protein kinases (SGKs), is structurally related to the PKB family including regulation by PI3K but lack a PH domain. However, in addition to PH domains, a second class of 3' phosphorylated inositol phospholipid-binding domains exists that is termed Phox homology (PX) domain: this domain is found in one of the SGKs (SGK3). Here, we summarize knowledge of the three SGK isoforms and compare and contrast them to PKB with respect to their possible importance in cellular regulation and potential as therapeutic targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号