首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   36篇
  598篇
  2023年   8篇
  2022年   10篇
  2021年   21篇
  2020年   13篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   20篇
  2015年   31篇
  2014年   37篇
  2013年   51篇
  2012年   61篇
  2011年   47篇
  2010年   31篇
  2009年   40篇
  2008年   33篇
  2007年   35篇
  2006年   20篇
  2005年   26篇
  2004年   17篇
  2003年   22篇
  2002年   9篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1978年   1篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1959年   1篇
  1949年   1篇
  1936年   1篇
  1930年   1篇
  1928年   1篇
  1926年   1篇
排序方式: 共有598条查询结果,搜索用时 0 毫秒
71.
Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR) recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z) displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1) costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.  相似文献   
72.
Pasta is popular for its ease of cooking and its low glycaemic index (GI). This interesting nutritional property can be attributed to its specific compact structure generally described as a protein network entrapping starch granules. Despite this low GI, pasta is poor in fibres and lack some essential amino acids. To enhance its nutritional composition, pasta can be fortified with non-traditional ingredients such as legume flours. The objective of this study was to investigate the impact of legume flour addition on pasta structure and the inherent consequences on the in vitro digestibility of starch. The addition of a high level (35%, w/w) of legume flour, especially split pea flour, induced some minor structural changes in pasta. The inclusion of fibres, the dilution of gluten proteins by albumins and globulins, and the larger amount of thin protein films (in split pea pasta) may have favoured higher susceptibility of starch to digestive enzymes. At the opposite, the presence of some partially gelatinised starch granules in the core of fortified pasta may have favoured the decrease in the in vitro starch digestibility. As a consequence, a high level of legume flour addition in pasta did not have any significant impact on its in vitro starch digestibility. A high level of split pea and faba bean flours can thus be added to pasta to increase its nutritional composition while keeping its low glycaemic index.  相似文献   
73.
In the equine, the zona pellucida (ZP) is the major barrier to successful in vitro fertilization. Therefore the aim of our studies was to analyze species-specific features of the equine ZP in regard to structure and glycoprotein ZPB and ZPC expression sites during oocyte development and embryogenesis. The equine ZP revealed high immunological cross-reactivity to porcine ZPB and ZPC. In the ovary, the distribution of ZPB and ZPC was co-localized and correlated with the developmental stage of the follicle. ZPB and ZPC expression started in the oocyte of the late primordial and primary follicle. In the secondary follicle, both the oocyte and the cumulus cells contributed to ZPB and ZPC synthesis. After in vivo maturation the oocyte stopped ZPB and ZPC production whereas the cumulus cells continued synthesis. Contrary, in vitro matured (IVM) cumulus-oocyte-complexes (COCs) revealed a reverse expression pattern. This was correlated to alterations in the distribution, number, and size of pores in the ZP. In the zona, N-acetylglucosamine residues were co-localized with ZPC. The acellular glycoprotein capsule surrounding early equine embryos was negative for ZPB and ZPC. Our results imply that in the horse ZPB and ZPC glycoprotein expression is differentially regulated during folliculogenesis, oocyte maturation, and embryogenesis. Contrary to the bovine and porcine, zona protein synthesis during in vivo maturation is completely overtaken by the cumulus cells implying that in the horse these cells are crucial for zona integrity. During IVM, the cumulus cells lose their ability to synthesize glycoproteins leading to alterations in the zona structure.  相似文献   
74.
75.
76.
77.
Maize was domesticated at least 8700 years ago in the highlands of Mexico. Genome-wide studies have greatly contributed to shed light into the diffusion of maize through the Americas from its center of origin. Also the presence of two European introductions in southern and northern Europe is now established. Such a spread was accompanied by an extreme diversification, and adaptation to the long days and low temperatures of temperate climates has been a key step in maize evolution. Linkage mapping and association mapping have successfully led to the identification of a handful set of the genetic factors that have contributed to maize adaptation, opening the way to new discoveries. Ultimately, these alleles will contribute to sustain breeding efforts to meet the new challenges raised by the evolution of mankind.  相似文献   
78.
79.
Hatching asynchrony in avian species generally leads to a size hierarchy among siblings, favouring the first-hatched chicks. Maternally deposited hormones affect the embryo and chick's physiology and behaviour. It has been observed that progesterone, a hormone present at higher levels than other steroid hormones in egg yolks, is negatively related to body mass in embryos, chicks and adults. A differential within-clutch progesterone deposition could therefore be linked to the size hierarchy between siblings and to the resulting brood reduction. We tested whether yolk progesterone levels differed between eggs according to future parental ability to feed the entire clutch in wild rockhopper penguins Eudyptes chrysocome. This species presents a unique reversed egg-size dimorphism and hatching asynchrony, with the larger second-laid egg (B-egg) hatching before the smaller first-laid egg (A-egg). Yolk progesterone levels increased only slightly with female body mass at laying. However, intra-clutch ratios were not related to female body mass. On the other hand, yolk progesterone levels increased significantly with the date of laying onset for A-eggs while they decreased for B-eggs. Early clutches therefore had proportionally more progesterone in the B-egg compared to the A-egg while late clutches had proportionally less progesterone in the B-egg. We propose that females could strategically regulate yolk progesterone deposition within clutches according to the expected food availability during chick growth, an adaptive strategy to adjust brood reduction to conditions. We also discuss these results, relating to yolk progesterone, in the broader context of other yolk steroids.  相似文献   
80.
LABORATORY NOTE     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号