首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   49篇
  2023年   3篇
  2022年   2篇
  2021年   14篇
  2020年   8篇
  2019年   17篇
  2018年   11篇
  2017年   18篇
  2016年   16篇
  2015年   46篇
  2014年   32篇
  2013年   50篇
  2012年   72篇
  2011年   60篇
  2010年   26篇
  2009年   23篇
  2008年   52篇
  2007年   46篇
  2006年   35篇
  2005年   29篇
  2004年   31篇
  2003年   28篇
  2002年   22篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1940年   1篇
排序方式: 共有704条查询结果,搜索用时 62 毫秒
21.
22.
Functional redundancy can increase the resilience of ecosystem processes by providing insurance against species loss and the effects of abundance fluctuations. However, due to the difficulty of assessing individual species’ contributions and the lack of a metric allowing for a quantification of redundancy within communities, few attempts have been made to estimate redundancy for individual ecosystem processes. We present a new method linking interaction metrics with metabolic theory that allows for a quantification of redundancy at the level of ecosystem processes. Using this approach, redundancy in the predation on aphids and other prey by natural enemies across a landscape heterogeneity gradient was estimated. Functional redundancy of predators was high in heterogeneous landscapes, low in homogeneous landscapes and scaled with predator specialisation. Our approach allows quantifying functional redundancy within communities and can be used to assess the role of functional redundancy across a wide variety of ecosystem processes and environmental factors.  相似文献   
23.
The AMP-activated protein kinase is an evolutionarily conserved heterotrimer that is important for metabolic sensing in all eukaryotes. The muscle-specific isoform of the regulatory gamma-subunit of the kinase, AMP-activated protein kinase gamma3, has a key role in glucose and fat metabolism in skeletal muscle, as suggested by metabolic characterization of humans, pigs and mice harboring substitutions in the AMP-binding Bateman domains of gamma3. We demonstrate that AMP-activated protein kinase alpha2beta2gamma3 trimers are allosterically activated approximately three-fold by AMP with a half-maximal stimulation (A(0.5)) at 1.9 +/- 0.5 or 2.6 +/- 0.3 microm, as measured for complexes expressed in Escherichia coli or mammalian cells, respectively. We show that mutations in the N-terminal Bateman domain of gamma3 (R225Q, H306R and R307G) increased the A(0.5) values for AMP, whereas the fold activation of the enzyme by 200 microm AMP remained unchanged in comparison to the wild-type complex. The mutations in the C-terminal Bateman domain of gamma3 (H453R and R454G), on the other hand, substantially reduced the fold stimulation of the complex by 200 microm AMP, and resulted in AMP dependence curves similar to those of the double mutant, R225Q/R454G. A V224I mutation in gamma3, known to result in a reduced glycogen content in pigs, did not affect the fold activation or the A(0.5) values for AMP. Importantly, we did not detect any increase in phosphorylation of Thr172 of alpha2 by the upstream kinases in the presence of increasing concentrations of AMP. Taken together, the data show that different mutations in gamma3 exert different effects on the allosteric regulation of the alpha2beta2gamma3 complex by AMP, whereas we find no evidence for their role in regulating the level of phosphorylation of alpha2 by upstream kinases.  相似文献   
24.
25.
The mechanism of how patatin-like phospholipase domain-containing protein 3 (PNPLA3) variant M148 is associated with increased risk of development of hepatic steatosis is still debated. Here, we propose a novel role of PNPLA3 as a key player during autophagosome formation in the process of lipophagy. A human hepatocyte cell line, HepG2 cells, expressing recombinant I148 or 148M, was used to study lipophagy under energy deprived conditions, and lipid droplet morphology was investigated using florescence microscopy, image analysis and biochemical assays. Autophagic flux was studied using the golden-standard of LC3-II turnover in combination with the well characterized GFP-RFP-LC3 vector. To discriminate between, perturbed autophagic initiation and lysosome functionality, lysosomes were characterized by Lysotracker staining and LAMP1 protein levels as well as activity and activation of cathepsin B. For validation, human liver biopsies genotyped for I148 and 148M were analyzed for the presence of LC3-II and PNPLA3 on lipid droplets. We show that the M148-PNPLA3 variant is associated with lipid droplets that are resistant to starvation-mediated degradation. M148 expressing hepatocytes reveal decreased autophagic flux and reduced lipophagy. Both I148-PNPLA3 and M148-PNPLA3 colocalize and interact with LC3-II, but the M148-PNPLA3 variant has lower ability to bind LC3-II. Together, our data indicate that PNPLA3 might play an essential role in lipophagy in hepatocytes and furthermore that the M148-PNPLA3 variant appears to display a loss in this activity, leading to decreased lipophagy.  相似文献   
26.
The kinase suppressor of Ras (KSR) is a loss-of-function allele that suppresses the rough eye phenotype of activated Ras in Drosophila and the multivulval phenotype of activated Ras in Caenorhabditis elegans. The physiological role of mammalian KSR is not known. We examined the mechanisms regulating the phosphorylation of this putative kinase in mammalian cells. Wild-type mouse KSR and a mutated KSR protein predicted to create a kinase-dead protein are phosphorylated identically in intact cells and in the immune complex. Phosphopeptide sequencing identified 10 in vivo phosphorylation sites in KSR, all of which reside in the 539 noncatalytic amino terminal amino acids. Expression of the amino terminal portion of KSR alone demonstrated that it was phosphorylated in the intact cell and in an immune complex in a manner indistinguishable from that of intact KSR. These data demonstrate that the kinase domain of KSR is irrelevant to its phosphorylation state and suggest that the phosphorylation of KSR and its association with a distinct set of kinases may affect intracellular signaling.  相似文献   
27.
-N-Acetyl-d-hexosaminidase from Aspergillus oryzae catalysed the stereo- and regiospecific formation of the 6-O-benzylated disaccharide derivatives GalNAc1-3(6- OBn)Gal-SEt and GlcNAc1-3(6-OBn)Gal-SEt, which were obtained in transglycosylation reactions employing ethyl 6- O-benzyl-1-thio--d-galactopyranoside as acceptor. Preparative amounts of the chitobiose derivative GlcNAc1- 3GlcNAc-OPhNO2-p was prepared as well. - N-Acetyl-d-hexosaminidase from bovine testes catalysed the specific synthesis of GlcNAc1-3(6-OBn)GlcNH2-SEt and GalNAc1-3(6-OBn)GlcNH2-SEt, employing ethyl 2-amino-6-O-benzyl-2-deoxy-1-thio--d-glucopyranoside as acceptor. -d-Glucuronidase from E. coli was found to catalyse the formation of GlcA1-3(6-OBn)GlcNH2- SEt employing the same acceptor.  相似文献   
28.
29.
Progenitor cells in the mouse olfactory epithelium generate over a thousand subpopulations of neurons, each expressing a unique odorant receptor (OR) gene. This event is under the control of spatial cues, since neurons in different epithelial regions are restricted to express region-specific subsets of OR genes. We show that progenitors and neurons express the LIM-homeobox gene Lhx2 and that neurons in Lhx2-null mutant embryos do not diversify into subpopulations expressing different OR genes and other region-restricted genes such as Nqo1 and Ncam2. Lhx2-/- embryos have, however, a normal distribution of Mash1-positive and neurogenin 1-positive neuronal progenitors that leave the cell cycle, acquire pan-neuronal traits and form axon bundles. Increased cell death in combination with increased expression of the early differentiation marker Neurod1, as well as reduced expression of late differentiation markers (Galphaolf and Omp), suggests that neuronal differentiation in the absence of Lhx2 is primarily inhibited at, or immediate prior to, onset of OR expression. Aberrant regional expression of early and late differentiation markers, taken together with unaltered region-restricted expression of the Msx1 homeobox gene in the progenitor cell layer of Lhx2-/- embryos, shows that Lhx2 function is not required for all aspects of regional specification of progenitors and neurons. Thus, these results indicate that a cell-autonomous function of Lhx2 is required for differentiation of progenitors into a heterogeneous population of individually and regionally specified mature olfactory sensory neurons.  相似文献   
30.
We have previously reported that the heparan sulfate-priming glycoside 2-(6-hydroxynaphthyl)-beta-D-xylopyranoside selectively inhibits growth of transformed or tumor-derived cells. To investigate the specificity of this xyloside various analogs were synthesized and tested in vitro. Selective growth inhibition was dependent on the presence of a free 6-hydroxyl in the aglycon. Because cells deficient in heparan sulfate synthesis were insensitive to the xyloside, we conclude that priming of heparan sulfate synthesis was required for growth inhibition. In growth-inhibited cells, heparan sulfate chains primed by the active xyloside were degraded to products that contained anhydromannose and appeared in the nuclei. Hence the degradation products were generated by nitric oxide-dependent cleavage. Accordingly, nitric oxide depletion reduced nuclear localization of the degradation products and counteracted the growth-inhibitory effect of the xyloside. We propose that 2-(6-hydroxynaphthyl)-beta-D-xylopyranoside entered cells and primed synthesis of heparan sulfate chains that were subsequently degraded by nitric oxide into products that accumulated in the nucleus. In vivo experiments demonstrated that the xyloside administered subcutaneously, perorally, or intraperitoneally was adsorbed and made available to tumor cells located subcutaneously. Treatment with the xyloside reduced the average tumor load by 70-97% in SCID mice. The present xyloside may serve as a lead compound for the development of novel antitumor strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号