首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   49篇
  国内免费   1篇
  2023年   4篇
  2022年   13篇
  2021年   37篇
  2020年   26篇
  2019年   19篇
  2018年   34篇
  2017年   24篇
  2016年   31篇
  2015年   33篇
  2014年   44篇
  2013年   62篇
  2012年   53篇
  2011年   39篇
  2010年   38篇
  2009年   31篇
  2008年   29篇
  2007年   24篇
  2006年   22篇
  2005年   15篇
  2004年   16篇
  2003年   16篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1990年   2篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有670条查询结果,搜索用时 109 毫秒
41.
Embryonic stem cells (ESCs) hold great promise for therapeutic use and represent a unique tool for investigating the process of self-renewal and differentiation. The properties that make ESCs unique are their capacity of unlimited self-renewal coupled with the property of re-entering the developmental process if returned inside a blastocyst. Such plasticity enable ESCs to form all embryonic tissues including germ cells. However, these remarkable properties, at present, have been demonstrated only for mouse ESCs even if cells with somehow more limited capacities have been derived in many different species including humans. The isolation of pluripotent embryonic cells lines from human embryos marked a crucial change of perspective in evaluating the properties defining an embryonic stem cell lines moving the focus from the generation of a germ-line chimera, obviously not feasible nor desirable in human, to the capacity of these cells to differentiate both in vivo and in vitro in fully mature and functional cell types of all kinds. Therefore, ESCs properties in species different from the mouse are being reassessed and re-evaluated, in view of their potential use as experimental models for the development of clinical applications. Among the species that may play a useful role in this field, the pig has a long-standing history as a prime animal model for pre-clinical biomedical applications and therefore, pig ESCs are attracting renewed interest. In this review, we will summarize the current knowledge on this topic and will contrast the relatively limited data available in this species with the much larger wealth of information available for mouse and human ESCs, in an attempt to assess whether or not pig ESCs can actually become a useful tool in the fast growing field of cell therapy.  相似文献   
42.
Snake scales contain specialized hard keratins (beta-keratins) and alpha- or cyto-keratins in their epidermis. The number, isoelectric point, and the evolution of these proteins in snakes and their similarity with those of other vertebrates are not known. In the present study, alpha- and beta-keratins of snake molts and of the whole epidermis have been studied by using two-dimensional electrophoresis and immunocytochemistry. Specific keratins in snake epidermis have been identified by using antibodies that recognize acidic and basic cytokeratins and avian or lizard scale beta-keratin. Alpha keratins of 40-70 kDa and isoelectric point (pI) at 4.5-7.0 are present in molts. The study suggests that cytokeratins in snakes are acidic or neutral, in contrast to mammals and birds where basic keratins are also present. Beta keratins of 10-15 kDa and a pI of 6.5-8.5 are found in molts. Some beta-keratins appear as basic proteins (pI 8.2) comparable to those present in the epidermis of other reptiles. Some basic "beta-keratins" associate with cytokeratins as matrix proteins and replace cytokeratins forming the corneous material of the mature beta-layer of snake scales, as in other reptiles. The study also suggests that more forms of beta-keratins (more than three different types) are present in the epidermis of snakes.  相似文献   
43.
Aerobiologia - The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina...  相似文献   
44.
45.
46.
47.
48.

Background

The aetiopathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) is still unknown. The role of atopy and the concept of united airways in such patients are still a matter of debate. In this pilot study we aimed at evaluating the degree of eosinophilic inflammation and the frequency of atopy in a cohort of CRSwNP patients candidate for Functional Endoscopic Sinus Surgery (FESS) and assessing the association between these factors and relapsing forms of CRSwNP.

Methods

30 patients (18 men, 12 women) with CRSwNP eligible for FESS were evaluated before and after surgery. Preoperative investigation included: history of previous relapse after FESS, clinical and laboratory allergologic assessment, spirometry, methacholine challenge, blood eosinophilia and determination of the fraction of nitric oxide in exhaled air (FeNO). Nasal fibroendoscopy, spirometry and FeNO determination were also assessed prospectively at 3 and 27 months post-FESS.

Results

18/30 subjects were atopic, 6/18 (33 %) were monosensitized, 16/30 (53 %) were asthmatics and 10/30 (33 %) had non steroidalantinflammatory drugs (NSAIDs) hypersensitivity. Twenty-one patients (70 %) were classified as relapsers, 15/18 (83 %) among atopics, 6/12 (50 %) among non atopics (p = 0.05). Among patients with NSAIDs hypersensitivity, 9/10 (90 %) were relapsers. The median IgE concentration was 161.5 UI/mL in relapsers and 79 UI/mL in non-relapsers (ns). The mean FeNO decreased after FESS (43.1–26.6 ppb) in 84 % of patients, but this effect disappeared over time (FeNO = 37.7 ppb at 27 months). Higher levels of FeNO pre-FESS were detected in atopics, and in particular in relapsing ones (median 51.1 ppb vs 22.1, ns). Higher levels of FeNO pre-FESS were detected in asthmatic patients, especially in those who relapsed (median: 67 vs 64.85 ppb in non-relapsed patients, ns). The Tiffeneau Index (FEV1/FVC) was significantly lower in asthmatic relapsers than in non relapsers asthmatics (94.7 ± 11.1 versus 105 ± 5.9—p = 0.04). Patients with asthma and atopy had a major risk of relapse (p = 0.05).

Conclusion

In our pilot study, atopy, severe asthma, bronchial inflammation, NSAIDs hypersensitivity and high level of total IgE are possible useful prognostic factors for the proneness to relapse after FESS. The role of allergy in CRSwNP pathogenesis should consequently be given deeper consideration. Allergen specific immunotherapy, combined with anti-IgE therapy, may have an immunomodulatory effect preventing polyps relapse and need to be investigated.

Electronic supplementary material

The online version of this article (doi:10.1186/s12948-015-0026-8) contains supplementary material, which is available to authorized users.  相似文献   
49.
DNA-binding proteins from starved cells (Dps) differ in the number and position of charged residues along the “ferritin-like” pores that are used by iron to reach the ferroxidase center and the protein cavity. These differences are shown to affect significantly the electrostatic potential at the pores, which determines the extent of cooperativity in the iron uptake kinetics and thereby the mass distribution of the ferric hydroxide micelles inside the protein cavity. These conclusions are of biotechnological value in the preparation of protein-enclosed nanomaterials and are expected to apply also to ferritins. They were reached after characterization of the Dps from Listeria innocua, Helicobacter pylori, Thermosynechococcus elongatus, Escherichia coli, and Mycobacterium smegmatis. The characterization comprised the calculation of the electrostatic potential at the pores, determination of the iron uptake kinetics in the presence of molecular oxygen or hydrogen peroxide, and analysis of the proteins by means of the sedimentation velocity after iron incorporation.  相似文献   
50.
Mice deficient in α-sarcoglycan (Sgca-null mice) develop progressive muscular dystrophy and serve as a model for human limb girdle muscular dystrophy type 2D. Sgca-null mice suffer a more severe myopathy than that of mdx mice, the model for Duchenne muscular dystrophy. This is the opposite of what is observed in humans and the reason for this is unknown. In an attempt to understand the cellular basis of this severe muscular dystrophy, we isolated clonal populations of myogenic progenitor cells (MPCs), the resident postnatal muscle progenitors of dystrophic and wild-type mice. MPCs from Sgca-null mice generated much smaller clones than MPCs from wild-type or mdx dystrophic mice. Impaired proliferation of Sgca-null myogenic precursors was confirmed by single fiber analysis and this difference correlated with Sgca expression during MPC proliferation. In the absence of dystrophin and associated proteins, which are only expressed after differentiation, SGCA complexes with and stabilizes FGFR1. Deficiency of Sgca leads to an absence of FGFR1 expression at the membrane and impaired MPC proliferation in response to bFGF. The low proliferation rate of Sgca-null MPCs was rescued by transduction with Sgca-expressing lentiviral vectors. When transplanted into dystrophic muscle, Sgca-null MPCs exhibited reduced engraftment. The reduced proliferative ability of Sgca-null MPCs explains, at least in part, the severity of this muscular dystrophy and also why wild-type donor progenitor cells engraft efficiently and consequently ameliorate disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号