首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   44篇
  国内免费   1篇
  2023年   4篇
  2022年   11篇
  2021年   36篇
  2020年   22篇
  2019年   15篇
  2018年   30篇
  2017年   22篇
  2016年   26篇
  2015年   25篇
  2014年   40篇
  2013年   55篇
  2012年   53篇
  2011年   41篇
  2010年   30篇
  2009年   28篇
  2008年   29篇
  2007年   21篇
  2006年   21篇
  2005年   13篇
  2004年   15篇
  2003年   15篇
  2002年   10篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   5篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
  1960年   1篇
排序方式: 共有638条查询结果,搜索用时 15 毫秒
71.
72.
Epidemiologic and experimental studies suggest that dietary fatty acids influence the development and progression of breast cancer. However, no clear data are present in literature that could demonstrate how n?-?3 PUFA can interfere with breast cancer growth. It is suggested that these fatty acids might change the structure of cell membrane, especially of lipid rafts. During this study we treated MCF-7 and MDA-MB-231 cells with AA, EPA, and DHA to assess if they are incorporated in lipid raft phospholipids and are able to change chemical and physical properties of these structures. Our data demonstrate that PUFA and their metabolites are inserted with different yield in cell membrane microdomains and are able to alter fatty acid composition without decreasing the total percentage of saturated fatty acids that characterize these structures. In particular in MDA-MB-231 cells, that displays the highest content of Chol and saturated fatty acids, we observed the lowest incorporation of DHA, probably for sterical reasons; nevertheless DHA was able to decrease Chol and SM content. Moreover, PUFA are incorporated in breast cancer lipid rafts with different specificity for the phospholipid moiety, in particular PUFA are incorporated in PI, PS, and PC phospholipids that may be relevant to the formation of PUFA metabolites (prostaglandins, prostacyclins, leukotrienes, resolvines, and protectines) of phospholipids deriving second messengers and signal transduction activation. The bio-physical changes after n?-?3 PUFA incubation have also been highlighted by atomic force microscopy. In particular, for both cell lines the DHA treatment produced a decrease of the lipid rafts in the order of about 20-30?%. It is worth noticing that after DHA incorporation lipid rafts exhibit two different height ranges. In fact, some lipid rafts have a higher height of 6-6.5?nm. In conclusion n?-?3 PUFA are able to modify lipid raft biochemical and biophysical features leading to decrease of breast cancer cell proliferation probably through different mechanisms related to acyl chain length and unsaturation. While EPA may contribute to cell apoptosis mainly through decrease of AA concentration in lipid raft phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the content of cholesterol and probably the distribution of key proteins.  相似文献   
73.
The cellular response to DNA damage employs multiple dynamic protein modifications to exert rapid and adaptable effects. Substantial work has detailed the roles of canonical checkpoint-mediated phosphorylation in this program. Recent studies have also implicated sumoylation in the DNA damage response; however, a systematic view of the contribution of sumoylation to replication and repair and its interplay with checkpoints is lacking. Here, using a biochemical screen in yeast, we establish that DNA damage-induced sumoylation occurs on a large scale. We identify MRX (Mre11-Rad50-Xrs2) as a positive regulator of this induction for a subset of repair targets. In addition, we find that defective sumoylation results in failure to complete replication of a damaged genome and impaired DNA end processing, highlighting the importance of the SUMO-mediated response in genome integrity. We also show that DNA damage-induced sumoylation does not require Mec1 checkpoint signaling, and the presence of both enables optimal DNA damage resistance.  相似文献   
74.
The formyl peptide receptor 1 (FPR1) is mainly expressed by mammalian phagocytic leukocytes and plays a role in chemotaxis, killing of microorganisms through phagocytosis, and the generation of reactive oxygen species. A large number of ligands have been identified triggering FPR1 including formylated and non-formylated peptides of microbial and endogenous origin. While the expression of FPR1 in neutrophils has been investigated intensively, knowledge on the regulation of FPR1 expression in polarized macrophages is lacking. In this study we show that primary human neutrophils, monocytes and resting macrophages do express the receptor on their cell surface. Polarization of macrophages with IFNγ, LPS and with the TLR8 ligand 3M-002 further increases FPR1 mRNA levels but does not consistently increase protein expression or chemotaxis towards the FPR1 ligand fMLF. In contrast, polarization of primary human macrophages with IL-4 and IL-13 leading to the alternative activated macrophages, reduces FPR1 cell surface expression and abolishes chemotaxis towards fMLF. These results show that M2 macrophages will not react to triggering of FPR1, limiting the role for FPR1 to chemotaxis and superoxide production of resting and pro-inflammatory M1 macrophages.  相似文献   
75.

Background

Identification keys are decision trees which require the observation of one or more morphological characters of an organism at each step of the process. While modern digital keys can overcome several constraints of classical paper-printed keys, their performance is not error-free. Moreover, identification cannot be always achieved when a specimen lacks some morphological features (i.e. because of season, incomplete development or miss-collecting). DNA barcoding was proven to have great potential in plant identification, while it can be ineffective with some closely related taxa, in which the relatively brief evolutionary distance did not produce differences in the core-barcode sequences.

Methodology/Principal Findings

In this paper, we investigated how the DNA barcoding can support the modern digital approaches to the identification of organisms, using as a case study a local flora, that of Mt. Valerio, a small hill near the centre of Trieste (NE Italy). The core barcode markers (plastidial rbcL and matK), plus the additional trnH-psbA region, were used to identify vascular plants specimens. The usefulness of DNA barcoding data in enhancing the performance of a digital identification key was tested on three independent simulated scenarios.

Conclusions/Significance

Our results show that the core barcode markers univocally identify most species of our local flora (96%). The trnH-psbA data improve the discriminating power of DNA barcoding among closely related plant taxa. In the multiparametric digital key, DNA barcoding data improves the identification success rate; in our simulation, DNA data overcame the absence of some morphological features, reaching a correct identification for 100% of the species. FRIDA, the software used to generate the digital key, has the potential to combine different data sources: we propose to use this feature to include molecular data as well, creating an integrated identification system for plant biodiversity surveys.  相似文献   
76.
CKS proteins are evolutionarily conserved cyclin-dependent kinase (CDK) subunits whose functions are incompletely understood. Mammals have two CKS proteins. CKS1 acts as a cofactor to the ubiquitin ligase complex SCF(SKP2) to promote degradation of CDK inhibitors, such as p27. Little is known about the role of the closely related CKS2. Using a Cks2(-/-) knockout mouse model, we show that CKS2 counteracts CKS1 and stabilizes p27. Unopposed CKS1 activity in Cks2(-/-) cells leads to loss of p27. The resulting unrestricted cyclin A/CDK2 activity is accompanied by shortening of the cell cycle, increased replication fork velocity, and DNA damage. In?vivo, Cks2(-/-) cortical progenitor cells are limited in their capacity to differentiate into mature neurons,?a phenotype akin to animals lacking p27. We propose that?the balance between CKS2 and CKS1 modulates p27 degradation, and with it cyclin A/CDK2 activity, to safeguard replicative fidelity and control neuronal differentiation.  相似文献   
77.
We have engineered bacterial outer membrane vesicles (OMVs) with dramatically enhanced functionality by fusing several heterologous proteins to the vesicle-associated toxin ClyA of Escherichia coli. Similar to native unfused ClyA, chimeric ClyA fusion proteins were found localized in bacterial OMVs and retained activity of the fusion partners, demonstrating for the first time that ClyA can be used to co-localize fully functional heterologous proteins directly in bacterial OMVs. For instance, fusions of ClyA to the enzymes β-lactamase and organophosphorus hydrolase resulted in synthetic OMVs that were capable of hydrolyzing β-lactam antibiotics and paraoxon, respectively. Similarly, expression of an anti-digoxin single-chain Fv antibody fragment fused to the C terminus of ClyA resulted in designer “immuno-MVs” that could bind tightly and specifically to the antibody's cognate antigen. Finally, OMVs displaying green fluorescent protein fused to the C terminus of ClyA were highly fluorescent and, as a result of this new functionality, could be easily tracked during vesicle interaction with human epithelial cells. We expect that the relative plasticity exhibited by ClyA as a fusion partner should prove useful for: (i) further mechanistic studies to identify the vesiculation machinery that regulates OMV secretion and to map the intracellular routing of ClyA-containing OMVs during invasion of host cells; and (ii) biotechnology applications such as surface display of proteins and delivery of biologics.  相似文献   
78.
We developed a cryo-HPLC/UV method for the simultaneous determination of artemisinin (1), alpha-dihydroartemisinin (2alpha), beta-dihydroartemisinin (2beta), and a ubiquitous thermal decomposition product of 2 (designated as diketoaldehyde, 3), starting from the International Pharmacopoeia monograph on dihydroartemisinin. The method takes for the first time the on-column epimerization process of 2 into consideration. Chromatographic separation was obtained under reversed-phase conditions on a Symmetry C18 column (3.5 microm particle size) with a mobile phase consisting of acetonitrile-water 60:40 (v/v), delivered at 0.60-1.00 ml/min flow-rates, with ultraviolet detection at low wavelength (lambda = 210 nm). Low temperatures (T = 0-10 degrees C) were selected on the grounds of a diastereoselective dynamic HPLC (DHPLC) study performed at different temperatures, aimed at identifying the best experimental conditions capable of minimizing the on-column interconversion process.  相似文献   
79.
80.
Streptococcal pullulanases have been recently proposed as key components of the metabolic machinery involved in bacterial adaptation to host niches. By sequence analysis of the Group B Streptococcus (GBS) genome we found a novel putative surface exposed protein with pullulanase activity. We named such a protein SAP. The sap gene is highly conserved among GBS strains and homologous genes, such as PulA and SpuA, have been described in other pathogenic streptococci. The SAP protein contains two N-terminal carbohydrate-binding motifs, followed by a catalytic domain and a C-terminal LPXTG cell wall-anchoring domain. In vitro analysis revealed that the recombinant form of SAP is able to degrade α-glucan polysaccharides, such as pullulan, glycogen and starch. Moreover, NMR analysis showed that SAP acts as a type I pullulanase. Studies performed on whole bacteria indicated that the presence of α-glucan polysaccharides in culture medium up-regulated the expression of SAP on bacterial surface as confirmed by FACS analysis and confocal imaging. Deletion of the sap gene resulted in a reduced capacity of bacteria to grow in medium containing pullulan or glycogen, but not glucose or maltose, confirming the pivotal role of SAP in GBS metabolism of α-glucans. As reported for other streptococcal pullulanases, we found specific anti-SAP antibodies in human sera from healthy volunteers. Investigation of the functional role of anti-SAP antibodies revealed that incubation of GBS in the presence of sera from animals immunized with SAP reduced the capacity of the bacterium to degrade pullulan. Of interest, anti-SAP sera, although to a lower extent, also inhibited Group A Streptococcus pullulanase activity. These data open new perspectives on the possibility to use SAP as a potential vaccine component inducing functional cross-reacting antibodies interfering with streptococcal infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号