首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   43篇
  2024年   1篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   14篇
  2015年   22篇
  2014年   25篇
  2013年   35篇
  2012年   45篇
  2011年   31篇
  2010年   24篇
  2009年   29篇
  2008年   30篇
  2007年   26篇
  2006年   29篇
  2005年   23篇
  2004年   17篇
  2003年   19篇
  2002年   13篇
  2001年   7篇
  2000年   9篇
  1999年   9篇
  1998年   12篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1976年   2篇
  1975年   3篇
  1973年   3篇
排序方式: 共有537条查询结果,搜索用时 31 毫秒
171.
RNA viruses within infected individuals exist as a population of evolutionary-related variants. Owing to evolutionary change affecting the constitution of this population, the frequency and/or occurrence of individual viral variants can show marked or subtle fluctuations. Since the development of massively parallel sequencing platforms, such viral populations can now be investigated to unprecedented resolution. A critical problem with such analyses is the presence of sequencing-related errors that obscure the identification of true biological variants present at low frequency. Here, we report the development and assessment of the Quality Assessment of Short Read (QUASR) Pipeline (http://sourceforge.net/projects/quasr) specific for virus genome short read analysis that minimizes sequencing errors from multiple deep-sequencing platforms, and enables post-mapping analysis of the minority variants within the viral population. QUASR significantly reduces the error-related noise in deep-sequencing datasets, resulting in increased mapping accuracy and reduction of erroneous mutations. Using QUASR, we have determined influenza virus genome dynamics in sequential samples from an in vitro evolution of 2009 pandemic H1N1 (A/H1N1/09) influenza from samples sequenced on both the Roche 454 GSFLX and Illumina GAIIx platforms. Importantly, concordance between the 454 and Illumina sequencing allowed unambiguous minority-variant detection and accurate determination of virus population turnover in vitro.  相似文献   
172.
Initially described by Jaeken et al. in 1980, congenital disorders of glycosylation (CDG) is a rapidly expanding group of human multisystemic disorders. To date, many CDG patients have been identified with deficiencies in the conserved oligomeric Golgi (COG) complex which is a complex involved in the vesicular intra-Golgi retrograde trafficking. Composed of eight subunits that are organized in two lobes, COG subunit deficiencies have been associated with Golgi glycosylation abnormalities. Analysis of the total serum N-glycans of COG-deficient CDG patients demonstrated an overall decrease in terminal sialylation and galactosylation. According to the mutated COG subunits, differences in late Golgi glycosylation were observed and led us to address the question of an independent role and requirement for each of the two lobes of the COG complex in the stability and localization of late terminal Golgi glycosylation enzymes. For this, we used a small-interfering RNAs strategy in HeLa cells stably expressing green fluorescent protein (GFP)-tagged β1,4-galactosyltransferase 1 (B4GALT1) and α2,6-sialyltransferase 1 (ST6GAL1), two major Golgi glycosyltransferases involved in late Golgi N-glycosylation. Using fluorescent lectins and flow cytometry analysis, we clearly demonstrated that depletion of both lobes was associated with deficiencies in terminal Golgi N-glycosylation. Lobe A depletion resulted in dramatic changes in the Golgi structure, whereas lobe B depletion severely altered the stability of B4GALT1 and ST6GAL1. Only MG132 was able to rescue their steady-state levels, suggesting that B4GALT1- and ST6GAL1-induced degradation are likely the consequence of an accumulation in the endoplasmic reticulum (ER), followed by a retrotranslocation into the cytosol and proteasomal degradation. All together, our results suggest differential effects of lobe A and lobe B for the localization/stability of B4GALT1 and ST6GAL1. Lobe B would be crucial in preventing these two Golgi glycosyltransferases from inappropriate retrograde trafficking to the ER, whereas lobe A appears to be essential for maintaining the overall Golgi structure.  相似文献   
173.
Extensive evidence implicates the ventral striatum in multiple distinct facets of action selection. Early work established a role in modulating ongoing behavior, as engaged by the energizing and directing influences of motivationally relevant cues and the willingness to expend effort in order to obtain reward. More recently, reinforcement learning models have suggested the notion of ventral striatum primarily as an evaluation step during learning, which serves as a critic to update a separate actor. Recent computational and experimental work may provide a resolution to the differences between these two theories through a careful parsing of behavior and the instrinsic heterogeneity that characterizes this complex structure.  相似文献   
174.
Uncoupling protein 3 (UCP3) may reduce mitochondrial ROS production, and thereby protect against mitochondrial dysfunction in skeletal muscle. UCP3 has been suggested to specifically fulfill this role under high-fat conditions. Here we show that UCP3 knockout mice indeed have elevated mitochondrial ROS production after short-term (8 weeks) high-fat feeding. After 26 weeks of high-fat feeding, UCP3 knockout mice exhibited reduced mitochondrial function as measured ex vivo in isolated mitochondria. In conclusion, these data suggest that UCP3 may have a role in the protection of mitochondria against lipid-induced mitochondrial dysfunction, but only after long-term exposure to high-fat.  相似文献   
175.
Induced defences in marine and freshwater phytoplankton: a review   总被引:1,自引:0,他引:1  
Many organisms have developed defences to avoid predation by species at higher trophic levels. The capability of primary producers to defend themselves against herbivores affects their own survival, can modulate the strength of trophic cascades and changes rates of competitive exclusion in aquatic communities. Algal species are highly flexible in their morphology, growth form, biochemical composition and production of toxic and deterrent compounds. Several of these variable traits in phytoplankton have been interpreted as defence mechanisms against grazing. Zooplankton feed with differing success on various phytoplankton species, depending primarily on size, shape, cell wall structure and the production of toxins and deterrents. Chemical cues associated with (i) mechanical damage, (ii) herbivore presence and (iii) grazing are the main factors triggering induced defences in both marine and freshwater phytoplankton, but most studies have failed to disentangle the exact mechanism(s) governing defence induction in any particular species. Induced defences in phytoplankton include changes in morphology (e.g. the formation of spines, colonies and thicker cell walls), biochemistry (such as production of toxins, repellents) and in life history characteristics (formation of cysts, reduced recruitment rate). Our categorization of inducible defences in terms of the responsible induction mechanism provides guidance for future work, as hardly any of the available studies on marine or freshwater plankton have performed all the treatments that are required to pinpoint the actual cue(s) for induction. We discuss the ecology of inducible defences in marine and freshwater phytoplankton with a special focus on the mechanisms of induction, the types of defences, their costs and benefits, and their consequences at the community level.  相似文献   
176.
Levels of IgG and IgM autoantibodies (AA) to malondialdehyde (MDA)-LDL and apoB-immune complexes (ICs) were measured in 748 cases and 1,723 controls in the EPIC-Norfolk cohort and their association to coronary artery disease (CAD) events determined. We evaluated whether AA and IC modify CAD risk associated with secretory phospholipase A(2) (sPLA(2)) type IIA mass and activity, lipoprotein-associated PLA(2) activity, lipoprotein (a) [Lp(a)], oxidized phospholipids on apoB-100 (OxPL/apoB), myeloperoxidase, and high sensitivity C-reactive protein. IgG ICs were higher in cases versus controls (P = 0.02). Elevated levels of IgM AA and IC were inversely associated with Framingham Risk Score and number of metabolic syndrome criteria (p range 0.02-0.001). In regression analyses adjusted for age, smoking, diabetes, LDL-cholesterol, HDL-cholesterol, and systolic blood pressure, the highest tertiles of IgG and IgM AA and IC were not associated with higher risk of CAD events compared with the lowest tertiles. However, elevated levels of IgM IC reduced the risk of Lp(a) (P = 0.006) and elevated IgG MDA-LDL potentiated the risk of sPLA(2) mass (P = 0.018). This epidemiological cohort of initially healthy subjects shows that IgG and IgM AA and IC are not independent predictors of CAD events but may modify CAD risk associated with elevated levels of oxidative biomarkers.  相似文献   
177.
We analyse simulations reported in "The co-evolution of individual behaviors and social institutions" by Bowles et al., 2003 in the Journal of Theoretical Biology 223, 135-147, and begin with distinguishing two types of group selection models. The literature does not provide different names for them, but they are shown to be fundamentally different and have quite different empirical implications. The working of the first one depends on the answer to the question "is the probability that you also are an altruist large enough", while the other needs an affirmative answer to "are our interests enough in line". The first one therefore can also be understood as a kin selection model, while the working of the second can also be described in terms of the direct benefits. The actual simulation model is a combination of the two. It is also a Markov chain, which has important implications for how the output data should be handled.  相似文献   
178.
Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane.  相似文献   
179.
Besides bulk amounts of SM, mammalian cells produce small quantities of the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or enzymes responsible for CPE production. Heterologous expression studies revealed that SM synthase (SMS)2 is a bifunctional enzyme producing both SM and CPE, whereas SMS-related protein (SMSr) serves as monofunctional CPE synthase. Acute disruption of SMSr catalytic activity in cultured cells causes a rise in endoplasmic reticulum (ER) ceramides, fragmentation of ER exit sites, and induction of mitochondrial apoptosis. To address the relevance of CPE biosynthesis in vivo, we analyzed the tissue-specific distribution of CPE in mice and generated mouse lines lacking SMSr and SMS2 catalytic activity. We found that CPE levels were >300-fold lower than SM in all tissues examined. Unexpectedly, combined inactivation of SMSr and SMS2 significantly reduced, but did not eliminate, tissue-specific CPE pools and had no obvious impact on mouse development or fertility. While SMSr is widely expressed and serves as the principal CPE synthase in the brain, blocking its catalytic activity did not affect ceramide levels or secretory pathway integrity in the brain or any other tissue. Our data provide a first inventory of CPE species and CPE-biosynthetic enzymes in mammals.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号