首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   687篇
  免费   47篇
  2024年   1篇
  2022年   10篇
  2021年   10篇
  2020年   5篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   16篇
  2015年   30篇
  2014年   29篇
  2013年   49篇
  2012年   55篇
  2011年   41篇
  2010年   31篇
  2009年   36篇
  2008年   37篇
  2007年   35篇
  2006年   34篇
  2005年   38篇
  2004年   28篇
  2003年   28篇
  2002年   13篇
  2001年   17篇
  2000年   14篇
  1999年   12篇
  1998年   17篇
  1997年   9篇
  1996年   8篇
  1995年   7篇
  1994年   7篇
  1993年   12篇
  1992年   15篇
  1991年   15篇
  1990年   7篇
  1989年   9篇
  1988年   8篇
  1987年   6篇
  1986年   9篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1963年   1篇
排序方式: 共有734条查询结果,搜索用时 78 毫秒
91.
The recognition of peptidoglycan by cells of the innate immune system has been controversial; both TLR2 and nucleotide-binding oligomerization domain-2 (NOD2) have been implicated in this process. In the present study we demonstrate that although NOD2 is required for recognition of peptidoglycan, this leads to strong synergistic effects on TLR2-mediated production of both pro- and anti-inflammatory cytokines. Defective IL-10 production in patients with Crohn's disease bearing loss of function mutations of NOD2 may lead to overwhelming inflammation due to a subsequent Th1 bias. In addition to the potentiation of TLR2 effects, NOD2 is a modulator of signals transmitted through TLR4 and TLR3, but not through TLR5, TLR9, or TLR7. Thus, interaction between NOD2 and specific TLR pathways may represent an important modulatory mechanism of innate immune responses.  相似文献   
92.
Fat can be stored not only in adipose tissue but also in other tissues such as skeletal muscle. Fat droplets accumulated in skeletal muscle [intramyocellular lipids (IMCLs)] can be quantified by different methods, all with advantages and drawbacks. Here, we briefly review IMCL quantification methods that use biopsy specimens (biochemical quantification, electron microscopy, and histochemistry) and non-invasive alternatives (magnetic resonance spectroscopy, magnetic resonance imaging, and computed tomography). Regarding the physiological role, it has been suggested that IMCL serves as an intracellular source of energy during exercise. Indeed, IMCL content decreases during prolonged submaximal exercise, and analogously to glycogen, IMCL content is increased in the trained state. In addition, IMCL content is highest in oxidative, type 1 muscle fibers. Together, this, indeed, suggests that the IMCL content is increased in the trained state to optimally match fat oxidative capacity and that it serves as readily available fuel. However, elevation of plasma fatty acid levels or dietary fat content also increases IMCL content, suggesting that skeletal muscle also stores fat simply if the availability of fatty acids is high. Under these conditions, the uptake into skeletal muscle may have negative consequences on insulin sensitivity. Besides the evaluation of the various methods to quantify IMCLs, this perspective describes IMCLs as valuable energy stores during prolonged exercise, which, however, in the absence of regular physical activity and with overconsumption of fat, can have detrimental effects on muscular insulin sensitivity.  相似文献   
93.
94.
Kinematics of the human masticatory system during opening and closing of the jaw have been reported widely. Evidence has been provided that the opening and closing movement of the jaw differ from one another. However, different approaches of movement registration yield divergent expectations with regard to a difference in loading of the temporomandibular joint between these movements. Because of these diverging expectations, it was hypothesized that joint loading is equal during opening and closing. This hypothesis was tested by predicting loading of the temporomandibular joint during an unloaded opening and closing movement of the jaw by means of a three-dimensional biomechanical model of the human masticatory system. Model predictions showed that the joint reaction forces were markedly higher during opening than during closing. The predicted opening trace of the centre of the mandibular condyle was located cranially of the closing trace, with a maximum difference between the traces of 0.45 mm. The hypothesis, postulating similarity of joint loading during unloaded opening and closing of the jaw, therefore, was rejected. Sensitivity analysis showed that the reported differences were not affected in a qualitative sense by muscular activation levels, the thickness of the cartilaginous layers within the temporomandibular joint or the gross morphology of the model. Our predictions indicate that the TMJ is loaded more heavily during unloaded jaw opening than during unloaded jaw closing.  相似文献   
95.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a critical enzyme involved in infection. It catalyzes two reactions to integrate the viral cDNA into the host genome, 3′ processing and strand transfer, but the dynamic behavior of the active site during catalysis of these two processes remains poorly characterized. NMR spectroscopy can reveal important structural details about enzyme mechanisms, but to date the IN catalytic core domain has proven resistant to such an analysis. Here, we present the first NMR studies of a soluble variant of the catalytic core domain. The NMR chemical shifts are found to corroborate structures observed in crystals, and confirm prior studies suggesting that the α4 helix extends toward the active site. We also observe a dramatic improvement in NMR spectra with increasing MgCl2 concentration. This improvement suggests a structural transition not only near the active site residues but also throughout the entire molecule as IN binds Mg2+. In particular, the stability of the core domain is linked to the conformation of its C-terminal helix, which has implications for relative domain orientation in the full-length enzyme. 15N relaxation experiments further show that, although conformationally flexible, the catalytic loop of IN is not fully disordered in the absence of DNA. Indeed, automated chemical shift-based modeling of the active site loop reveals several stable clusters that show striking similarity to a recent crystal structure of prototype foamy virus IN bound to DNA.  相似文献   
96.
97.
Bax R  Raué HA  Vos JC 《RNA (New York, N.Y.)》2006,12(11):2005-2013
Slx9p (Ygr081cp) is a nonessential yeast protein previously linked genetically with the DNA helicase Sgs1p. Here we report that Slx9p is involved in ribosome biogenesis in the yeast Saccharomyces cerevisiae. Deletion of SLX9 results in a mild growth defect and a reduction in the level of 18S rRNA. Co-immunoprecipitation experiments showed that Slx9p is associated with 35S, 23S, and 20S pre-rRNA, as well as U3 snoRNA and, thus, is a bona fide component of pre-ribosomes. The most striking effects on pre-rRNA processing resulting from deletion of SLX9 is the accumulation of the mutually exclusive 21S and 27SA2 pre-rRNA. Furthermore, deletion of SLX9 is synthetically lethal with mutations in Rrp5p that block cleavage at either site A2 or A3. We conclude that Slx9p has a unique role in the processing events responsible for separating the 66S and 43S pre-ribosomal particles. Interestingly, homologs of Slx9p were found only in other yeast species, indicating that the protein has been considerably less well conserved during evolution than the majority of trans-acting processing factors.  相似文献   
98.
UCP3 has been postulated to function in the defense against lipid-induced oxidative muscle damage (lipotoxicity). We explored this hypothesis during cachexia in rats (zymosan-induced sepsis), a condition characterized by increased oxidative stress and supply of fatty acids to the muscle. Muscle UCP3 protein content was increased 2, 6 and 11 days after zymosan injection. Plasma FFA levels were increased at day 2, but dropped below control levels on days 6 and 11. Muscular levels of the lipid peroxidation byproduct 4-hydroxy-2-nonenal (4-HNE) were increased at days 6 and 11 in zymosan-treated rats, supporting a role for UCP3 in modulating lipotoxicity during cachexia.  相似文献   
99.
The genetics community is increasingly concerned that patents might lead to restricted access to research and health care. We explore various measures that are designed to render patented genetic inventions accessible to further use in research, and to diagnosis and/or treatment. They include the often-recited research or experimental-use exemption, conventional one-to-one licensing and compulsory licensing, as well as patent pools and clearing-house mechanisms. The last two alternatives deserve special attention in the area of human genetics.  相似文献   
100.
Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号