首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1062篇
  免费   86篇
  2023年   4篇
  2022年   16篇
  2021年   45篇
  2020年   13篇
  2019年   33篇
  2018年   22篇
  2017年   21篇
  2016年   48篇
  2015年   62篇
  2014年   90篇
  2013年   81篇
  2012年   102篇
  2011年   96篇
  2010年   59篇
  2009年   63篇
  2008年   61篇
  2007年   53篇
  2006年   42篇
  2005年   37篇
  2004年   31篇
  2003年   22篇
  2002年   22篇
  2001年   11篇
  2000年   4篇
  1999年   10篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   8篇
  1985年   2篇
  1982年   2篇
  1981年   7篇
  1979年   8篇
  1978年   3篇
  1975年   6篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有1148条查询结果,搜索用时 15 毫秒
81.
In the following review we use recent examples from the literature to discuss progress in the area of atomistic and coarse-grained molecular dynamics simulations of selected bacterial membranes and proteins, with a particular focus on Gram-negative bacteria. As structural biology continues to provide increasingly high-resolution data on the proteins that reside within these membranes, simulations have an important role to play in linking these data with the dynamical behavior and function of these proteins. In particular, in the last few years there has been significant progress in addressing the issue of biochemical complexity of bacterial membranes such that the heterogeneity of the lipid and protein components of these membranes are now being incorporated into molecular-level models. Thus, in future we can look forward to complementary data from structural biology and molecular simulations combining to provide key details of structure-dynamics-function relationships in bacterial membranes.  相似文献   
82.
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.  相似文献   
83.
N6-Methyladenosine (m6A) is the most abundant internal modification in RNA and is specifically recognized by YT521-B homology (YTH) domain-containing proteins. Recently we reported that YTHDC1 prefers guanosine and disfavors adenosine at the position preceding the m6A nucleotide in RNA and preferentially binds to the GG(m6A)C sequence. Now we systematically characterized the binding affinities of the YTH domains of three other human proteins and yeast YTH domain protein Pho92 and determined the crystal structures of the YTH domains of human YTHDF1 and yeast Pho92 in complex with a 5-mer m6A RNA, respectively. Our binding and structural data revealed that the YTH domain used a conserved aromatic cage to recognize m6A. Nevertheless, none of these YTH domains, except YTHDC1, display sequence selectivity at the position preceding the m6A modification. Structural comparison of these different YTH domains revealed that among those, only YTHDC1 harbors a distinctly selective binding pocket for the nucleotide preceding the m6A nucleotide.  相似文献   
84.
Concerns about the spread of avian influenza viruses (AIVs) have led to cloacal swab sampling of hundreds of thousands of birds worldwide as part of AIV surveillance schemes, but the effects of cloacal swabbing have not been adequately evaluated. We tested for differences between swabbed, swabbed and bled, and non‐sampled wild ducks in terms of live re‐encounter and dead recoveries for Common Pochard Aythya ferina and Tufted Duck Aythya fuligula, and also determined re‐encounter and recovery rates for Mallard Anas platyrhynchos and Common Teal Anas crecca. No effects of sampling methods were detected, except in Teal. Re‐encounter rates were lower in sampled Teal than in controls, with annual re‐encounter probabilities being 25% and 35% lower in males and females, respectively. Teal possibly left or avoided sampling sites, or sought sites where they were less detectable after sampling. In general, no deleterious effects were found, suggesting that cloacal swabbing and blood sampling are suitable methods for conducting AIV surveillance in ducks.  相似文献   
85.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in plasma cholesterol regulation through modulation of low density lipoprotein receptor (LDLR) levels. Naturally occurring mutations can lead to hyper- or hypocholesterolemia in human. Recently, we reported that PCSK9 was also able to modulate CD81 in Huh7 cells. In the present study, several gain-of-function and loss-of-function mutants as well as engineered mutants of PCSK9 were compared for their ability to modulate the cell surface expression of LDLR and CD81. Although PCSK9 gain-of-function D374Y enhanced the degradation both receptors, D374H and D129N seemed to only reduce LDLR levels. In contrast, mutations in the C-terminal hinge-cysteine-histidine-rich domain segment primarily affected the PCSK9-induced CD81 degradation. Furthermore, when C-terminally fused to an ACE2 transmembrane anchor, the secretory N-terminal catalytic or hinge-cysteine-histidine-rich domain domains of PCSK9 were able to reduce CD81 and LDLR levels. These data confirm that PCSK9 reduces CD81 levels via an intracellular pathway as reported for LDLR. Using immunocytochemistry, a proximity ligation assay, and co-immunoprecipitation, we found that the cell surface level of PCSK9 was enhanced upon overexpression of CD81 and that both PCSK9 and LDLR interact with this tetraspanin protein. Interestingly, using CHO-A7 cells lacking LDLR expression, we revealed that LDLR was not required for the degradation of CD81 by PCSK9, but its presence strengthened the PCSK9 effect.  相似文献   
86.
IntroductionSystemic sclerosis (SSc) and primary biliary cirrhosis (PBC) are rare polygenic autoimmune diseases (AIDs) characterized by fibroblast dysfunction. Furthermore, both diseases share some genetic bases with other AIDs, as evidenced by autoimmune gene pleiotropism. The present study was undertaken to investigate whether single-nucleotide polymorphisms (SNPs) identified by a large genome-wide association study (GWAS) in PBC might contribute to SSc susceptibility.MethodsSixteen PBC susceptibility SNPs were genotyped in a total of 1,616 patients with SSc and 3,621 healthy controls from two European populations (France and Italy).ResultsWe observed an association between PLCL2 rs1372072 (odds ratio (OR) = 1.22, 95% confidence interval (CI) 1.12 to 1.33, Padj = 7.22 × 10−5), nuclear factor-kappa-B (NF-κB) rs7665090 (OR = 1.15, 95% CI 1.06 to 1.25, Padj = 0.01), and IRF8 rs11117432 (OR = 0.75, 95% CI 0.67 to 0.86, Padj = 2.49 × 10−4) with SSc susceptibility. Furthermore, phenotype stratification showed an association between rs1372072 and rs11117432 with the limited cutaneous subgroup (lcSSc) (Padj = 4.45 × 10−4 and Padj = 0.001), whereas rs7665090 was associated with the diffuse cutaneous subtype (dcSSc) (Padj = 0.003). Genotype-mRNA expression correlation analysis revealed that the IRF8 protective allele was associated with increased interferon-gamma (IFN-γ) expression (P = 0.03) in patients with SSc but decreased type I IFN (IFIT1) expression in patients and controls (P = 0.02). In addition, we found an epistatic interaction between NF-κB and IRF8 (OR = 0.56, 95% CI 0.00 to 0.74, P = 4 × 10−4) which in turn revealed that the IRF8 protective effect is dependent on the presence of the NF-κB susceptibility allele.ConclusionsAn analysis of pleiotropic genes identified two new susceptibility genes for SSc (NF-κB and PLCL2) and confirmed the IRF8 locus. Furthermore, the IRF8 variant influenced the IFN signature, and we found an interaction between IRF8 and NF-κB gene variants that might play a role in SSc susceptibility.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0572-y) contains supplementary material, which is available to authorized users.  相似文献   
87.
88.
Adaptation to adverse environmental conditions such as high altitude requires physiological and/or morphological changes. Genome scans provide a means to identify the genetic basis of such adaptations without previous knowledge about the particular genetic variants or traits under selection. In this study, we scanned 3027 amplified fragment length polymorphisms (AFLP) in four populations of the common vole Microtus arvalis for loci associated with local adaptation and high altitude. We investigated voles from two populations at high elevation (~2000 m a.s.l.) representing the upper limit of the altitudinal distribution of the species and two geographically close low-altitude populations (<600 m a.s.l.). Statistical analysis incorporated a new Bayesian F(ST) outlier approach specifically developed for AFLP markers, which considers the intensity of AFLP bands instead of mere presence/absence and allows to derive population-based estimates of allele frequencies and F(IS) values. Computer simulations showed that this approach increases the statistical power of the detection of AFLP markers under selection almost to the power of single nucleotide polymorphism (SNP) data without compromising specificity. Our enhanced genome scan resulted in 20 prime candidate markers for positive selection, which show mostly extremely high allele frequency differences between the low- and high-altitude populations. The comparison of global- and pairwise-enhanced genome scans demonstrated further that very strong selective signatures may also be associated with single populations suggesting the importance of local adaptation in alpine populations of common voles.  相似文献   
89.

Background  

Discovering the genetic basis of common genetic diseases in the human genome represents a public health issue. However, the dimensionality of the genetic data (up to 1 million genetic markers) and its complexity make the statistical analysis a challenging task.  相似文献   
90.
Meiotic DNA double-strand breaks (DSBs) initiate crossover (CO) recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs). Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR) protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs). First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs) during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号