首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7901篇
  免费   731篇
  国内免费   2篇
  8634篇
  2024年   4篇
  2023年   41篇
  2022年   81篇
  2021年   181篇
  2020年   117篇
  2019年   136篇
  2018年   170篇
  2017年   177篇
  2016年   220篇
  2015年   417篇
  2014年   466篇
  2013年   591篇
  2012年   727篇
  2011年   697篇
  2010年   439篇
  2009年   408篇
  2008年   563篇
  2007年   504篇
  2006年   494篇
  2005年   437篇
  2004年   459篇
  2003年   328篇
  2002年   372篇
  2001年   80篇
  2000年   44篇
  1999年   70篇
  1998年   88篇
  1997年   53篇
  1996年   31篇
  1995年   26篇
  1994年   25篇
  1993年   31篇
  1992年   14篇
  1991年   14篇
  1990年   20篇
  1989年   14篇
  1988年   7篇
  1987年   10篇
  1986年   6篇
  1985年   5篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1967年   2篇
  1960年   3篇
排序方式: 共有8634条查询结果,搜索用时 15 毫秒
991.
The hypothesis was tested that mechanical loading, induced by hindlimb suspension and subsequent reloading, affects expression of the basement membrane components tenascin-C and fibronectin in the belly portion of rat soleus muscle. One day of reloading, but not the previous 14 days of hindlimb suspension, led to ectopic accumulation of tenascin-C and an increase of fibronectin in the endomysium of a proportion (8 and 15%) of muscle fibers. Large increases of tenascin-C (40-fold) and fibronectin (7-fold) mRNA within 1 day of reloading indicates the involvement of pretranslational mechanisms in tenascin-C and fibronectin accumulation. The endomysial accumulation of tenascin-C was maintained up to 14 days of reloading and was strongly associated with centrally nucleated fibers. The observations demonstrate that an unaccustomed increase of rat soleus muscle loading causes modification of the basement membrane of damaged muscle fibers through ectopic endomysial expression of tenascin-C.  相似文献   
992.
993.
We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6 ± 1.0 years, BMI 31.5 ± 0.4 kg/m(2); 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6-6(2)H(2)] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39-56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r(2) = 27-32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations.  相似文献   
994.
Developmental plasticity is often correlated with diversity and has been proposed as a facilitator of phenotypic novelty. Yet how a dimorphism arises or how additional morphs are added is not understood, and few systems provide experimental insight into the evolution of polyphenisms. Because plasticity correlates with structural diversity in Pristionchus nematodes, studies in this group can test the role of plasticity in facilitating novelty. Here, we describe three new species, Pristionchus fukushimae sp. nov. , Pristionchus hoplostomus sp. nov. , and the hermaphroditic Pristionchus triformis sp. nov. , which are characterized by a novel polymorphism in their mouthparts. In addition to showing the canonical mouth dimorphism of diplogastrid nematodes, comprising a stenostomatous (‘narrow‐mouthed’) and a eurystomatous (‘wide‐mouthed’) form, the new species exhibit forms with six, 12, or intermediate numbers of cheilostomatal plates. Correlated with this polymorphism is another trait that varies among species: whereas divisions between plates are complete in P. triformis sp. nov. , which is biased towards a novel ‘megastomatous’ form comprising 12 complete plates, the homologous divisions in the other new species are partial and of variable length. In a reconstruction of character evolution, a phylogeny inferred from 26 ribosomal protein genes and a partial small subunit rRNA gene supported the megastomatous form of P. triformis sp. nov. as the derived end of a series of split‐plate forms. Although split‐plate forms were normally only observed in eurystomatous nematodes, a single 12‐plated stenostomatous individual of P. hoplostomus sp. nov. was also observed, suggesting independence of the two types of mouth plasticity. By introducing these new species to the Pristionchus model system, this study provides further insight into the evolution of polymorphisms and their evolutionary intermediates. © 2013 The Linnean Society of London  相似文献   
995.
It is debated whether alien plants in new environments benefit from being mycorrhizal and whether widely distributed natives and aliens differ in their associations with mycorrhizal fungi. Here, we compared whether species differing in their origin status, i.e. natives, archaeophytes (alien species introduced before the year 1500) and neophytes (introduced after the year 1500), and arbuscular mycorrhizal (AM) status (obligate, facultative, non‐mycorrhizal) differ in their area of occupancy in Germany (i.e. number of occupied grid cells, each ~130 km²). We used generalized linear models, incorporating main effects and up to three‐way interactions combining AM status, origin status and plant functional traits. The latter were chosen to describe the possible trade‐off in carbon allocation either towards the symbiosis or to other plant structures, such as storage organs (significant interactions involving traits were assumed to indicate the existence of such trade‐offs). AM status significantly explained the area of occupancy of natives and neophytes – with facultative mycorrhizal species occupying the largest area in both groups – but was less pronounced among archaeophytes. Archaeophytes may have reduced dependency on AM fungi, as they are generally agricultural weeds and the symbiosis potentially becomes obsolete for plants growing in habitats providing a steady provision of nutrients. Trait interactions between AM status and other functional traits were almost exclusively detected for neophytes. While facultative mycorrhizal neophytes benefit from trade‐offs with other traits related to high C cost in terms of area of occupancy, such trade‐offs were almost absent among natives. This indicates that natives and neophytes benefit differently from the symbiosis and suggests that native AM fungal partners might be less important for neophytic than for native plant species or that more time is required to establish similar relationships between neophytes and native fungal symbionts.  相似文献   
996.
Klann M  Koeppl H  Reuss M 《PloS one》2012,7(1):e29645
The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.  相似文献   
997.
Plants vary widely in how common or rare they are, but whether commonness of species is associated with functional traits is still debated. This might partly be because commonness can be measured at different spatial scales, and because most studies focus solely on aboveground functional traits. We measured five root traits and seed mass on 241 central European grassland species, and extracted their specific leaf area, height, mycorrhizal status and bud-bank size from databases. Then we tested if trait values are associated with commonness at seven spatial scales, ranging from abundance in 16-m2 grassland plots, via regional and European-wide occurrence frequencies, to worldwide naturalization success. At every spatial scale, commonness was associated with at least three traits. The traits explained the greatest proportions of variance for abundance in grassland plots (42%) and naturalization success (41%) and the least for occurrence frequencies in Europe and the Mediterranean (2%). Low root tissue density characterized common species at every scale, whereas other traits showed directional changes depending on the scale. We also found that many of the effects had significant non-linear effects, in most cases with the highest commonness-metric value at intermediate trait values. Across scales, belowground traits explained overall more variance in species commonness (19.4%) than aboveground traits (12.6%). The changes we found in the relationships between traits and commonness, when going from one spatial scale to another, could at least partly explain the maintenance of trait variation in nature. Most importantly, our study shows that within grasslands, belowground traits are at least as important as aboveground traits for species commonness. Therefore, belowground traits should be more frequently considered in studies on plant functional ecology.  相似文献   
998.
Polyphosphoinositides are an important class of lipid that recruit specific effector proteins to organelle membranes. One member, phosphatidylinositol 4-phosphate (PtdIns4P) has been localized to Golgi membranes based on the distribution of lipid binding modules from PtdIns4P effector proteins. However, these probes may be biased by additional interactions with other Golgi-specific determinants. In this paper, we derive a new PtdIns4P biosensor using the PtdIns4P binding of SidM (P4M) domain of the secreted effector protein SidM from the bacterial pathogen Legionella pneumophila. PtdIns4P was necessary and sufficient for localization of P4M, which revealed pools of the lipid associated not only with the Golgi but also with the plasma membrane and Rab7-positive late endosomes/lysosomes. PtdIns4P distribution was determined by the localization and activities of both its anabolic and catabolic enzymes. Therefore, P4M reports a wider cellular distribution of PtdIns4P than previous probes and therefore will be valuable for dissecting the biological functions of PtdIns4P in its assorted membrane compartments.  相似文献   
999.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
1000.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号