首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8669篇
  免费   792篇
  国内免费   2篇
  2023年   35篇
  2022年   76篇
  2021年   187篇
  2020年   127篇
  2019年   144篇
  2018年   184篇
  2017年   190篇
  2016年   237篇
  2015年   440篇
  2014年   491篇
  2013年   624篇
  2012年   768篇
  2011年   729篇
  2010年   465篇
  2009年   428篇
  2008年   596篇
  2007年   545篇
  2006年   534篇
  2005年   469篇
  2004年   484篇
  2003年   345篇
  2002年   393篇
  2001年   111篇
  2000年   72篇
  1999年   88篇
  1998年   108篇
  1997年   60篇
  1996年   36篇
  1995年   30篇
  1994年   33篇
  1993年   37篇
  1992年   27篇
  1991年   36篇
  1990年   34篇
  1989年   28篇
  1988年   30篇
  1987年   27篇
  1986年   17篇
  1985年   13篇
  1984年   22篇
  1983年   12篇
  1982年   14篇
  1981年   15篇
  1979年   11篇
  1978年   13篇
  1976年   11篇
  1975年   6篇
  1973年   6篇
  1972年   8篇
  1967年   6篇
排序方式: 共有9463条查询结果,搜索用时 187 毫秒
851.
Cardiac failure is a major health problem with increasing incidence due to aging of the population. Studies in both experimental animals and humans have suggested that aldosterone excess may have deleterious effects on cardiac function. In order to generate a novel screening system for the identification of aldosterone antagonists, we expressed the human mineralocorticoid receptor (MR) and the human glucocorticoid receptor (GR), respectively, in the fission yeast Schizosaccharomyces pombe. Reporter plasmids containing two hormone-responsive elements upstream of a fission yeast minimal promotor and either a lacZ gene (for quantification) or a neomycin gene (for survival screening) were constructed and cotransformed into fission yeast strains with expression plasmids for MR or GR. The functionality of the reporter systems was then tested using physiological ligands of both receptors as well as known inhibitors. Transactivating activity of MR could be stimulated by aldosterone, 11-deoxycorticosterone, 11-deoxycortisol, cortisol, cortisone, and spironolactone, but not by progesterone, while GR activity was stimulated by cortisol and cortisone, but also not by progesterone. Taken together, we have succeeded in establishing fission yeast-based screening systems that allow the identification of MR- or GR-interacting compounds. Moreover, our data show that after expression in fission yeast both receptors did not differentiate between steroids with different configurations at positions 11beta, 17 and 18. This finding suggests that only recognition of C-21 substituents may be accomplished by the receptor proteins alone, while the physiologically important selectivity towards other positions of the steroid ligand depends on other factors which are not conserved from fission yeast to man.  相似文献   
852.
A novel approach is presented combining quantitative metabolite and protein data and multivariate statistics for the analysis of time-related regulatory effects of plant metabolism at a systems level. For the analysis of metabolites, gas chromatography coupled to a time-of-flight mass analyzer (GC-TOF-MS) was used. Proteins were identified and quantified using a novel procedure based on shotgun sequencing as described recently (Weckwerth etal., 2004b, Proteomics 4, 78–83). For comparison, leaves of Arabidopsis thaliana wild type plants and starchless mutant plants deficient in phosphoglucomutase activity (PGM) were sampled at intervals throughout the day/night cycle. Using principal and independent components analysis, each dataset (metabolites and proteins) displayed discrete characteristics. Compared to the analysis of only metabolites or only proteins, independent components analysis (ICA) of the integrated metabolite/protein dataset resulted in an improved ability to distinguish between WT and PGM plants (first independent component) and, in parallel, to see diurnal variations in both plants (second independent component). Interestingly, levels of photorespiratory intermediates such as glycerate and glycine best characterized phases of diurnal rhythm, and were not influenced by high sugar accumulation in PGM plants. In contrast to WT plants, PGM plants showed an inversely regulated cluster of N-rich amino acid metabolites and carbohydrates, indicating a shift in C/N partitioning. This observation corresponds to altered utilization of urea cycle intermediates in PGM plants suggesting enhanced protein degradation and carbon utilization due to growth inhibition. Among the proteins chloroplastidic GAPDH (At3g26650) was the best discriminator between WT and PGM plants in contrast to the cytosolic isoform (At1g13440) according to the primary effect of mutation located in the chloroplast. The described method is applicable to all kinds of biological systems and enables the unbiased identification of biomarkers embedded in correlative metabolite–protein networks.  相似文献   
853.
Helicobacter pylori is one of the most common bacterial pathogens and causes a variety of diseases, such as peptic ulcer or gastric cancer. Despite intensive study of this human pathogen in the last decades, knowledge about its membrane proteins and, in particular, those which are putative components of the type IV secretion system encoded by the cag pathogenicity island (PAI) remains limited. Our aim is to establish a dynamic two-dimensional electrophoresis-polyacrylamide gel electrophoresis (2-DE-PAGE) database with multiple subproteomes of H. pylori (http://www.mpiib-berlin.mpg.de/2D-PAGE) which facilitates identification of bacterial proteins important in pathogen-host interactions. Using a proteomic approach, we investigated the protein composition of two H. pylori fractions: soluble proteins and structure-bound proteins (including membrane proteins). Both fractions differed markedly in the overall protein composition as determined by 2-DE. The 50 most abundant protein spots in each fraction were identified by peptide mass fingerprinting. We detected four cag PAI proteins, numerous outer membrane proteins (OMPs), the vacuolating cytotoxin VacA, other potential virulence factors, and few ribosomal proteins in the structure-bound fraction. In contrast, catalase (KatA), gamma-glutamyltranspeptidase (Ggt), and the neutrophil-activating protein NapA were found almost exclusively in the soluble protein fraction. The results presented here are an important complement to genome sequence data, and the established 2-D PAGE maps provide a basis for comparative studies of the H. pylori proteome. Such subproteomes in the public domain will be effective instruments for identifying new virulence factors and antigens of potential diagnostic and/or curative value against infections with this important pathogen.  相似文献   
854.
We aimed to validate an analytical approach based on proteomics on gastric cancer specimens for the identification of new putative diagnostic or prognostic markers. Primary screening was performed on gastrectomy specimens obtained from ten consecutive patients with gastric cancer. Gastric epithelial cells were obtained with an epithelial cell enrichment technique, homogenized and then separated by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The differential protein expression pattern was verified stepwise by Western blotting and immunohistochemistry on samples from 28 and 46 cancer patients, respectively. The putative clinical applicability and prognostic use were tested by an enzyme-linked immunoabsorbent assay on serum samples obtained from 149 cancer patients. One hundred-ninety-one differentially expressed protein spots were found by 2-D PAGE and identified by mass spectrometry, including cathepsin B, which was over-expressed in six (60%) patients. Western blotting confirmed that the active form of cathepsin B is over-expressed, while immunohistochemistry showed strong cytoplasmic staining in cancer tissues of 45 (98%) patients. The serum level of cathepsin B was increased in patients with gastric cancer compared to healthy controls (P = 0.0026) and correlated with T-category and the presence of distant metastases (P < 0.05). Serum levels above 129 pmol x L(-1) were associated with a reduced survival rate (P = 0.0297). Proteome analysis is a valuable tool for the identification of prognostic markers in gastric cancer: Increased cathepsin B serum levels are associated with advanced tumor stages and progressive disease, which enables the classification of some gastric cancer patients into a subgroup that should undergo aggressive therapy.  相似文献   
855.
Metachromatic leukodystrophy is a lysosomal storage disorder caused by a deficiency of arylsulfatase A (ASA). Biosynthesis studies of ASA with various structure-sensitive monoclonal antibodies reveal that some epitopes of the enzyme form within the first minutes of biosynthesis whereas other epitopes form later, between 10 and 25 min. When we investigated 12 various ASAs, with amino acid substitutions according to the missense mutations found in metachromatic leukodystrophy patients, immunoprecipitation with monoclonal antibodies revealed folding deficits in all 12 mutant ASA enzymes. Eleven of the 12 mutants show partial expression of the early epitopes, but only six of these show, in addition, incomplete expression of late epitopes. In none of the mutant enzymes were the late forming epitopes found in the absence of early epitopes. Thus, data from the wild-type and mutant enzymes indicate that the enzyme folds in a sequential manner and that the folding of early forming epitopes is a prerequisite for maturation of the late epitopes. All mutant enzymes in which the amino acid substitution prevents the expression of the late forming epitopes are retained in the endoplasmic reticulum (ER). In contrast, all mutants in which a single late epitope is at least partially expressed can leave the ER. Thus, irrespective of the missense mutation, the expression of epitopes forming late in biosynthesis correlates with the ability of the enzyme to leave the ER. The degradation of ER-retained enzymes can be reduced by inhibitors of the proteasome and ER alpha1,2-mannosidase I, indicating that all enzymes are degraded via the proteasome. Inhibition of degradation did not lead to an enhanced delivery from the ER for any of the mutant enzymes.  相似文献   
856.
By combining translation and membrane integration/translocation systems, we have constructed a novel cell-free system for the production of presecretory and integral membrane proteins in vitro. A totally defined, cell-free system reconstituted from a minimal number of translation factors was supplemented with urea-washed inverted membrane vesicles (U-INVs) prepared from Escherichia coli, as well as with purified proteins mediating membrane targeting of presecretory and integral membrane proteins. Initially, efficient membrane translocation of a presecretory protein (pOmpA) was obtained simply by the addition of only SecA and SecB. Proteinase K digestion clearly showed the successful translocation of pOmpA inside the vesicles. Next, integration of an inner membrane protein (MtlA) into U-INVs was achieved in the presence of only SRP (Ffh) and SR (FtsY). Finally, a membrane protein possessing a large periplasmic region (FtsQ) and therefore requiring both factors (SRP/SR and SecA/SecB) for membrane integration/translocation was also shown to be integrated correctly in this cell-free system. Thus, our novel cell-free system provides not only an efficient strategy for the production of membrane-related proteins but also an improved platform for the biological study of protein translocation and integration mechanisms.  相似文献   
857.
The ability of Staphylococcus aureus to adapt to various conditions of stress is the result of a complex regulatory response. Previously, it has been demonstrated that Clp homologues are important for a variety of stress conditions, and our laboratory has shown that a clpC homologue was highly expressed in the S. aureus strain DSM20231 during biofilm formation relative to expression in planktonic cells. Persistence and long-term survival are a hallmark of biofilm-associated staphylococcal infections, as cure frequently fails even in the presence of bactericidal antimicrobials. To determine the role of clpC in this context, we performed metabolic, gene expression, and long-term growth and survival analyses of DSM20231 as well as an isogenic clpC allelic-replacement mutant, a sigB mutant, and a clpC sigB double mutant. As expected, the clpC mutant showed increased sensitivity to oxidative and heat stresses. Unanticipated, however, was the reduced expression of the tricarboxylic acid (TCA) cycle gene citB (encoding aconitase), resulting in the loss of aconitase activity and preventing the catabolization of acetate during the stationary phase. clpC inactivation abolished post-stationary-phase recovery but also resulted in significantly enhanced stationary-phase survival compared to that of the wild-type strain. These data demonstrate the critical role of the ClpC ATPase in regulating the TCA cycle and implicate ClpC as being important for recovery from the stationary phase and also for entering the death phase. Understanding the stationary- and post-stationary-phase recovery in S. aureus may have important clinical implications, as little is known about the mechanisms of long-term persistence of chronic S. aureus infections associated with formation of biofilms.  相似文献   
858.
859.
Mammalian lipoxygenases (LOXs) are categorized with respect to their positional specificity of arachidonic acid oxygenation. Site-directed mutagenesis identified sequence determinants for the positional specificity of these enzymes, and a critical amino acid for the stereoselectivity was recently discovered. To search for sequence determinants of murine (12R)-LOX, we carried out multiple amino acid sequence alignments and found that Phe(390), Gly(441), Ala(455), and Val(631) align with previously identified positional determinants of S-LOX isoforms. Multiple site-directed mutagenesis studies on Phe(390) and Ala(455) did not induce specific alterations in the reaction specificity, but yielded enzyme species with reduced specific activities and stereo random product patterns. Mutation of Gly(441) to Ala, which caused drastic alterations in the reaction specificity of other LOX isoforms, failed to induce major alterations in the positional specificity of mouse (12R)-LOX, but markedly modified the enantioselectivity of the enzyme. When Val(631), which aligns with the positional determinant Ile(593) of rabbit 15-LOX, was mutated to a less space-filling residue (Ala or Gly), we obtained an enzyme species with augmented catalytic activity and specifically altered reaction characteristics (major formation of chiral (11R)-hydroxyeicosatetraenoic acid methyl ester). The importance of Val(631) for the stereo control of murine (12R)-LOX was confirmed with other substrates such as methyl linoleate and 20-hydroxyeicosatetraenoic acid methyl ester. These data identify Val(631) as the major sequence determinant for the specificity of murine (12R)-LOX. Furthermore, we conclude that substrate fatty acids may adopt different catalytically productive arrangements at the active site of murine (12R)-LOX and that each of these arrangements may lead to the formation of chiral oxygenation products.  相似文献   
860.
The R2 protein subunit of class I ribonucleotide reductase (RNR) belongs to a structurally related family of oxygen bridged diiron proteins. In wild-type R2 of Escherichia coli, reductive cleavage of molecular oxygen by the diferrous iron center generates a radical on a nearby tyrosine residue (Tyr122), which is essential for the enzymatic activity of RNR, converting ribonucleotides into deoxyribonucleotides. In this work, we characterize the mutant E. coli protein R2-Y122H, where the radical site is substituted with a histidine residue. The x-ray structure verifies the mutation. R2-Y122H contains a novel stable paramagnetic center which we name H, and which we have previously proposed to be a diferric iron center with a strongly coupled radical, Fe(III)Fe(III)R.. Here we report a detailed characterization of center H, using 1H/2H -14N/15N- and 57Fe-ENDOR in comparison with the Fe(III)Fe(IV) intermediate X observed in the iron reconstitution reaction of R2. Specific deuterium labeling of phenylalanine residues reveals that the radical results from a phenylalanine. As Phe208 is the only phenylalanine in the ligand sphere of the iron site, and generation of a phenyl radical requires a very high oxidation potential, we propose that in Y122H residue Phe208 is hydroxylated, as observed earlier in another mutant (R2-Y122F/E238A), and further oxidized to a phenoxyl radical, which is coordinated to Fe1. This work demonstrates that small structural changes can redirect the reactivity of the diiron site, leading to oxygenation of a hydrocarbon, as observed in the structurally similar methane monoxygenase, and beyond, to formation of a stable iron-coordinated radical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号