首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7898篇
  免费   732篇
  国内免费   2篇
  8632篇
  2024年   4篇
  2023年   41篇
  2022年   81篇
  2021年   181篇
  2020年   117篇
  2019年   136篇
  2018年   170篇
  2017年   177篇
  2016年   220篇
  2015年   417篇
  2014年   466篇
  2013年   591篇
  2012年   727篇
  2011年   697篇
  2010年   439篇
  2009年   408篇
  2008年   563篇
  2007年   504篇
  2006年   494篇
  2005年   436篇
  2004年   459篇
  2003年   327篇
  2002年   371篇
  2001年   80篇
  2000年   43篇
  1999年   70篇
  1998年   89篇
  1997年   53篇
  1996年   31篇
  1995年   26篇
  1994年   25篇
  1993年   31篇
  1992年   14篇
  1991年   14篇
  1990年   21篇
  1989年   14篇
  1988年   7篇
  1987年   10篇
  1986年   6篇
  1985年   5篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1967年   2篇
  1960年   3篇
排序方式: 共有8632条查询结果,搜索用时 0 毫秒
101.
Although arbuscular mycorrhizal fungi (AMF) form spatially complex communities in terrestrial ecosystems, the scales at which this diversity manifests itself is poorly understood. This information is critical to the understanding of the role of AMF in plant community composition. We examined small-scale (submetre) variability of AMF community composition (terminal restriction fragment length polymorphism fingerprinting) and abundance (extraradical hyphal lengths) in two 1 m(2) plots situated in a native grassland ecosystem of western Montana. Extraradical AMF hyphal lengths varied greatly between samples (14-89 m g soil(-1)) and exhibited spatial structure at scales <30 cm. The composition of AMF communities was also found to exhibit significant spatial autocorrelation, with correlogram analyses suggesting patchiness at scales <50 cm. Supportive of overall AMF community composition analyses, individual AMF ribotypes corresponding to specific phylogenetic groups exhibited distinct spatial autocorrelation. Our results demonstrate that AMF diversity and abundance can be spatially structured at scales of <1 m. Such small-scale heterogeneity in the soil suggests that establishing seedlings may be exposed to very different, location dependent AMF communities. Our results also have direct implications for representative sampling of AMF communities in the field.  相似文献   
102.
In high‐latitude regions, carbon dioxide (CO2) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot‐scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long‐term (2001–2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross‐seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change.  相似文献   
103.
104.
105.
The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.  相似文献   
106.
107.
During 250 h of observation, a total of 20 episodes of self-anointing, that is, the application of scent-bearing material onto the body, were recorded in a group of free-ranging Mexican spider monkeys (Ateles geoffroyi). The animals used the leaves of three species of plants (Brongniartia alamosana, Fabaceae; Cecropia obtusifolia, Cecropiaceae; and Apium graveolens, Umbelliferae) two of which have not been reported so far in this context in any New World primate species. The findings that only two males displayed self-anointing, that only the sternal and axillary regions of the body were rubbed with the mix of saliva and plant material, and a lack of correlation between the occurrence of self-anointing and time of day, season of the year, ambient temperature or humidity do not fit the hypothesis that this behavior functions in repelling insects and/or mitigating topical skin infections in this species. Rather, the data and the observation that the leaves of all three plant species spread an intensive and aromatic odor when crushed, support the hypothesis that self-anointing in A. geoffroyi may play a role in the context of social communication, possibly for signaling of social status or to increase sexual attractiveness.  相似文献   
108.
Studies of external seed transport on animals usually assume that the probability of detachment is constant, so that seed retention should show a simple exponential relationship with time. This assumption has not been tested explicitly, and may lead to inaccurate representation of long distance seed dispersal by animals. We test the assumption by comparing the fit to empirical data of simple, two‐parameter functions. Fifty‐two data sets were obtained from five published studies, describing seed retention of 32 plant species on sheep, cattle, deer, goats and mice. Model selection suggested a simple exponential function was adequate for data sets in which seed retention was followed for short periods ( <48 h). The data gathered over longer periods (49–219 days) were best described by the power exponential function, a form of the stretched exponential which allows a changing dropping rate. In these cases the power exponential showed that seed dropping rate decreased with time, suggesting that seeds vary in attachment, with some seeds becoming deeply buried or wound up in the animal's coat. Comparison of fitted parameters across all the data sets also confirmed that seeds with adhesive structures have lower dropping rates than those without. We conclude that the seed dropping rate often changes with time during external transport on animals and that the power exponential is an effective function to describe this change. We advise that, to analyse seed dropping rates adequately, retention should be measured over reasonable time periods – until most seeds are dropped – and both the simple and power exponential functions should be fitted to the resulting data. To increase its utility, we provide functions describing the seed dropping rate and the dispersal kernel resulting from the power exponential relationship.  相似文献   
109.
The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data-a common practice in phylogenomic analyses-introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号