首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8194篇
  免费   753篇
  国内免费   2篇
  8949篇
  2023年   41篇
  2022年   82篇
  2021年   181篇
  2020年   120篇
  2019年   138篇
  2018年   174篇
  2017年   181篇
  2016年   233篇
  2015年   423篇
  2014年   471篇
  2013年   605篇
  2012年   739篇
  2011年   710篇
  2010年   451篇
  2009年   413篇
  2008年   570篇
  2007年   518篇
  2006年   514篇
  2005年   441篇
  2004年   468篇
  2003年   335篇
  2002年   384篇
  2001年   89篇
  2000年   53篇
  1999年   74篇
  1998年   88篇
  1997年   55篇
  1996年   32篇
  1995年   32篇
  1994年   25篇
  1993年   33篇
  1992年   16篇
  1991年   18篇
  1990年   28篇
  1989年   18篇
  1988年   9篇
  1987年   15篇
  1986年   7篇
  1985年   13篇
  1984年   18篇
  1983年   8篇
  1982年   9篇
  1981年   11篇
  1978年   12篇
  1976年   7篇
  1973年   7篇
  1969年   6篇
  1967年   9篇
  1966年   8篇
  1960年   5篇
排序方式: 共有8949条查询结果,搜索用时 15 毫秒
101.
An experimental set-up for acquiring metabolite and transient (13)C-labeling data in mammalian cells is presented. An efficient sampling procedure was established for hepatic cells cultured in six-well plates as a monolayer attached to collagen, which allowed simultaneous quenching of metabolism and extraction of the intracellular intermediates of interest. Extracellular concentrations of glucose, amino acids, lactate, pyruvate, and urea were determined by GC-MS procedures and were used for estimation of metabolic uptake and excretion rates. Sensitive LC-MS and GC-MS methods were used to quantify the intracellular intermediates of tricarboxylic acid cycle, glycolysis, and pentose phosphate pathway and for the determination of isotopomer fractions of the respective metabolites. Mass isotopomer fractions were determined in a transient (13)C-labeling experiment using (13)C-labeled glucose as substrate. The absolute amounts of intracellular metabolites were obtained from a non-labeled experiment carried out in exactly the same way as the (13)C-labeling experiment, except that the media contained naturally labeled glucose only. Estimation of intracellular metabolic fluxes from the presented data is addressed in part II of this contribution.  相似文献   
102.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
103.
Several 3H-spiro[[2]benzofuran-1,4′-piperidines] bearing a p-fluorobenzyl residue at the N-atom and various substituents in position 3 of the benzofuran system were synthesized. The crucial reaction steps are the addition of a lithiated benzaldehyde derivative to the p-fluorobenzylpiperidone 5 and the BF3·OEt2 catalyzed substitution of the methoxy group of 2a by various nucleophiles. Structure–affinity relationship studies revealed that compounds with two protons (2d), a methoxy group (2a), and a cyano group (2e) in position 3 possess subnanomolar σ1 affinity (Ki = 0.18 nM, 0.79 nM, 0.86 nM) and high selectivity against the σ2 subtype. The metabolites of 2a, 2d, and 2e, which were formed upon incubation with rat liver microsomes, were identified. Additionally, the rate of metabolic degradation of 2a, 2d, and 2e was determined and compared with the degradation rate of the non-fluorinated spirocyclic compound 1. For the synthesis of the potential PET tracers [18F]2a and [18F]2e two different radiosynthetic approaches were followed.  相似文献   
104.
Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a “distribution box,” transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.  相似文献   
105.
Although seed-dispersal networks are increasingly used to infer the functioning of ecosystems, few studies have investigated the link between the properties of these networks and the ecosystem function of seed dispersal by animals. We investigate how frugivore communities and seed dispersal change with habitat disturbance and test whether relationships between morphological traits and functional roles of seed dispersers change in response to human-induced forest edges. We recorded interaction frequencies between fleshy fruited plants and frugivorous bird species in tropical montane forests in the Bolivian Andes and recorded functional bird traits (body mass, gape width and wing tip length) associated with quantitative (seed-removal rate) and qualitative (seed-deposition pattern) components of seed-dispersal effectiveness. We found that the abundance and richness of frugivorous birds were higher at forest edges. More fruits were removed and dispersed seeds were less clustered at edges than in the interior. Additionally, functional and interaction diversity were higher at edges than in the interior, but functional and interaction evenness did not differ. Interaction strength of bird species increased with body mass, gape width and wing tip length in the forest interior, but was not related to bird morphologies at forest edges. Our study suggests that increases in functional and interaction diversity and an even distribution of interaction strength across bird morphologies lead to enhanced quantity and tentatively enhanced quality of seed dispersal. It also suggests that the effects of species traits on ecosystem functions can vary along small-scale gradients of human disturbance.  相似文献   
106.
107.
A combination of gene and cell-based therapies may provide significant advantages over existing treatments in terms of their effectiveness. However, long-term efficient gene delivery has been difficult to achieve in many cell types, including endothelial cells. We developed a freeze-thaw technique which significantly increases the transduction efficiency of recombinant adeno-associated virus vectors in human aortic endothelial cells (23-fold) and in human renal proximal tubular epithelial cells (128-fold) in comparison to current methods for transduction. Freeze-thaw resulted in a transient but significant increase in cell surface area by 1,174 ± 69.8 µM2 per cell. Reduction of cryogenic medium volume and repeated freeze-thaw further increased transduction efficiency by 2.8- and 2.4-fold, respectively. Trypsinization, dimethylsulfoxide, and cold temperatures, which are also involved in cell preservation, had no significant impact on transduction efficiency. Increased transduction was also observed in mesenchymal stem cells (42-fold) by the freeze-thaw method. The potential mechanism of this novel technique likely involves an increase in the net permeable area of biological membranes caused by water crystallization. These findings provide a new approach for gene delivery in various cell types, particularly in those resistant to transduction by conventional methods. gene therapy; endothelial cells; stem cells; cell therapy  相似文献   
108.

Background  

Gene function analysis often requires a complex and laborious sequence of laboratory and computer-based experiments. Choosing an effective experimental design generally results from hypotheses derived from prior knowledge or experimentation. Knowledge obtained from meta-analyzing compendia of expression data with annotation libraries can provide significant clues in understanding gene and network function, resulting in better hypotheses that can be tested in the laboratory.  相似文献   
109.
Current methods for system‐wide gene expression analysis detect changes in mRNA abundance, but neglect regulation at the level of translation. Pulse labeling with stable isotopes has been used to measure protein turnover rates, but this does not directly provide information about translation rates. Here, we developed pulsed stable isotope labeling by amino acids in cell culture (pSILAC) with two heavy isotope labels to directly quantify protein translation on a proteome‐wide scale. We applied the method to cellular iron homeostasis as a model system and demonstrate that it can confidently identify proteins that are translationally regulated by iron availability.  相似文献   
110.
Introduction – The lack of pharmacopoeial methodologies for the quality control of plants used for therapeutic purposes is a huge problem that impacts directly upon public health. In the case of saponins, their great structural complexity, weak glycoside bonds and high polarity hinder their identification by conventional techniques. Objective – To apply high‐performance liquid chromatography–electrospray tandem mass spectrometry (HPLC‐ESI/MSn) to identify the O‐glycoside sequence of saponins from the roots of Phytolacca bogotensis. Methodology – Saponins were isolated by preparative HPLC and characterised by NMR spectroscopic experiments. Collision‐induced dissociation (CID) of isolated saponins was performed producing typical degradation reactions that can be associated with several glycosidic bonds as empirical criteria. A method using solid‐phase extraction (SPE) and HPLC/ESI‐MSn for the characterisation of saponins and identification of novel molecules is described. Results – Three saponins reported for the first time in P. bogotensis were isolated and characterised by NMR spectroscopy. Characteristic cross ring cleavage reactions have been used as empirical criteria for the characterisation of the glycosidic bonds most frequently reported for Phytolacca saponins. One new saponin was proposed on the basis of empirical criteria, and other five saponins were identified for the first time for P. bogotensis using HPLC‐ESI/MSn. Conclusion – Electrospray ionisation in combination with tandem mass spectrometry has been established as a powerful tool for the profiling of saponins from roots of P. bogotensis. CID proved to be a useful tool for the characterisation and identification of known and novel saponins from the plant family Phytolaccaceae and can be used for quality control purposes of crude plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号