首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2570篇
  免费   275篇
  国内免费   4篇
  2021年   29篇
  2020年   23篇
  2019年   37篇
  2018年   31篇
  2017年   29篇
  2016年   46篇
  2015年   67篇
  2014年   85篇
  2013年   122篇
  2012年   137篇
  2011年   115篇
  2010年   77篇
  2009年   68篇
  2008年   103篇
  2007年   91篇
  2006年   106篇
  2005年   80篇
  2004年   90篇
  2003年   75篇
  2002年   81篇
  2001年   87篇
  2000年   79篇
  1999年   83篇
  1998年   38篇
  1997年   39篇
  1996年   38篇
  1995年   28篇
  1994年   33篇
  1993年   38篇
  1992年   72篇
  1991年   55篇
  1990年   69篇
  1989年   61篇
  1988年   39篇
  1987年   49篇
  1986年   44篇
  1985年   33篇
  1984年   40篇
  1983年   20篇
  1982年   19篇
  1981年   17篇
  1980年   17篇
  1979年   41篇
  1978年   23篇
  1977年   26篇
  1976年   32篇
  1975年   19篇
  1974年   28篇
  1973年   19篇
  1972年   18篇
排序方式: 共有2849条查询结果,搜索用时 31 毫秒
71.
Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS.  相似文献   
72.
Crystal structures are known for three members of the bacterial neutral protease family: thermolysin from Bacillus thermoproteolyticus (TLN), the neutral protease from Bacillus cereus (NEU), and the elastase of Pseudomonas aeruginosa (PAE), both in free and ligand-bound forms. Each enzyme consists of an N-terminal and C-terminal domain with the active site formed at the junction of the two domains. Comparison of the different molecules reveals that the structure within each domain is well conserved, but there are substantial hinge-bending displacements (up to 16 degrees) of one domain relative to the other. These domain motions can be correlated with the presence or absence of bound inhibitor, as was previously observed in the specific example of PAE [Thayer, M.M., Flaherty, K.M., & McKay, D.B. (1991) J. Biol. Chem. 266, 2864-2871]. The binding of inhibitor appears to be associated with a reduction of the domain hinge-bending angle by 6-14 degrees and a closure of the "jaws" of the active site cleft by about 2 A. Crystallographic refinement of the structure of thermolysin suggests that electron density seen in the active site of the enzyme in the original structure determination probably corresponds to a bound dipeptide. Thus, the crystal structure appears to correspond to an enzyme-inhibitor or enzyme-product complex, rather than the free enzyme, as has previously been assumed.  相似文献   
73.
The cis/trans isomerization of the peptide bond preceding proline residues in proteins can limit the rate at which a protein folds to its native conformation. Mutagenic analyses of dihydrofolate reductase (DHFR) from Escherichia coli show that this isomerization reaction can be intramolecularly catalyzed by a side chain from an amino acid which is distant in sequence but adjacent in the native conformation. The guanidinium NH2 nitrogen of Arg 44 forms one hydrogen bond to the imide nitrogen and a second to the carbonyl oxygen of Pro 66 in wild-type DHFR. Replacement of Arg 44 with Leu results in a change of the nature of the two slow steps in refolding from being limited by the acquisition of secondary and/or tertiary structure to being limited by isomerization. The simultaneous replacement of Pro 66 with Ala (i.e., the Leu 44/Ala 66 double mutant) eliminates this isomerization reaction and once again makes protein folding the limiting process. Apparently, one or both of the hydrogen bonds between Arg 44 and Pro 66 accelerate the isomerization of the Gln 65-Pro 66 peptide bond. The replacement of Arg 44 with Leu affects the kinetics of the slow folding reactions in a fashion which indicates that the crucial hydrogen bonds form in the transition states for the rate-limiting steps in folding.  相似文献   
74.
75.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   
76.
Envelope oligomerization is thought to serve several crucial functions during the life cycle of human immunodeficiency virus type 1 (HIV-1). We recently reported that virus entry requires coiled-coil formation of the leucine zipper-like domain of the HIV-1 transmembrane envelope glycoprotein gp41 (C. Wild, T. Oas, C. McDanal, D. Bolognesi, and T. Matthews, Proc. Natl. Acad. Sci. USA 89:10537-10541, 1992; C. Wild, J. W. Dubay, T. Greenwell, T. Baird, Jr., T. G. Oas, C. McDanal, E. Hunter, and T. Matthews, Proc. Natl. Acad. Sci. USA 91:12676-12680, 1994). To determine the oligomeric state mediated by this region of the envelope, we have expressed the zipper motif as a fusion partner with the monomeric maltose-binding protein of Escherichia coli. The biophysical properties of this protein were characterized by velocity and equilibrium sedimentation, size exclusion chromatography, light scattering, and chemical cross-linking analyses. Results indicate that the leucine zipper sequence from HIV-1 is capable of multimerizing much larger and otherwise monomeric proteins into extremely stable tetramers. Recombinant proteins containing an alanine or a serine substitution at a critical isoleucine residue within the zipper region were also generated and similarly analyzed. The alanine- and serine-substituted proteins behaved as tetrameric and monomeric species, respectively, consistent with the influence of these same substitutions on the helical coiled-coil structure of synthetic peptide models. On the basis of these findings, we propose that the fusogenic gp4l structure involves tetramerization of the leucine zipper domain which is situated approximately 30 residues from the N-terminal fusion peptide sequence.  相似文献   
77.
Inhibition of NF-kappaB DNA binding by nitric oxide.   总被引:12,自引:1,他引:11       下载免费PDF全文
  相似文献   
78.
Structures of the blood clotting enzyme thrombin complexed with hirugen and two active site inhibitors, RWJ-50353 10080(N-methyl-D-phenylalanyl-N-[5-[(aminoiminomethyl)amino]-1- [[(2-benzothiazolyl)carbonyl]butyl]-L-prolinamide trifluoroacetate hydrate) and RWJ-50215 (N-[4-(aminoiminomethyl)amino-1-[2- (thiazol-2-ylcarbonylethyl)piperidin- 1-ylcarbonyl]butyl]-5-(dimethylamino)naphthalenesulfonamide trifluoroacetate hydrate), were determined by x-ray crystallography. The refinements converged at R values of 0.158 in the 7.0-2.3-A range for RWJ-50353 and 0.155 in the 7.0-1.8-A range for RWJ-50215. Interactions between the protein and the thiazole rings of the two inhibitors provide new valuable information about the S1' binding site of thrombin. The RWJ-50353 inhibitor consists of an S1'-binding benzothiazole group linked to the D-Phe-Pro-Arg chloromethyl ketone motif. Interactions with the S1-S3 sites are similar to the D-phenylalanyl-prolyl-arginyl chloromethylketone structure. In RWJ-50215, a S1'-binding 2-ketothiazole group was added to the thrombin inhibitor-like framework of dansylarginine N-(3-ethyl-1,5-pentanediyl)amide. The geometry at the S1-S3 sites here is also similar to that of the parent compound. The benzothiazole and 2-ketothiazole groups bind in a cavity surrounded by His57, Tyr60A, Trp60D, and Lys60F. This location of the S1' binding site is consistent with previous structures of thrombin complexes with hirulog-3, CVS-995, and hirutonin-2 and -6. The ring nitrogen of the RWJ-50353 benzothiazole forms a hydrogen bond with His57, and Lys60F reorients because of close contacts. The oxygen and nitrogen of the ketothiazole of RWJ-50215 hydrogen bond with the NZ atom of Lys60F.  相似文献   
79.
Three different DNA mapping techniques—RFLP, RAPD and AFLP—were used on identical soybean germplasm to compare their ability to identify markers in the development of a genetic linkage map. Polymorphisms present in fourteen different soybean cultivars were demonstrated using all three techniques. AFLP, a novel PCR-based technique, was able to identify multiple polymorphic bands in a denaturing gel using 60 of 64 primer pairs tested. AFLP relies on primers designed in part on sequences for endonuclease restriction sites and on three selective nucleotides. The 60 diagnostic primer pairs tested for AFLP analysis each distinguished on average six polymorphic bands. Using specific primers designed for soybean fromEco RI andMse I restriction site sequences and three selective nucleotides, as many as 12 polymorphic bands per primer could be obtained with AFLP techniques. Only 35% of the RAPD reactions identified a polymorphic band using the same soybean cultivars, and in those positive reactions, typically only one or two polymorphic bands per gel were found. Identification of polymorphic bands using RFLP techniques was the most cumbersome, because Southern blotting and probe hybridization were required. Over 50% of the soybean RFLP probes examined failed to distinguish even a single polymorphic band, and the RFLP probes that did distinguish polymorphic bands seldom identified more than one polymorphic band. We conclude that, among the three techniques tested, AFLP is the most useful.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号