首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2570篇
  免费   275篇
  国内免费   4篇
  2021年   29篇
  2020年   23篇
  2019年   37篇
  2018年   31篇
  2017年   29篇
  2016年   46篇
  2015年   67篇
  2014年   85篇
  2013年   122篇
  2012年   137篇
  2011年   115篇
  2010年   77篇
  2009年   68篇
  2008年   103篇
  2007年   91篇
  2006年   106篇
  2005年   80篇
  2004年   90篇
  2003年   75篇
  2002年   81篇
  2001年   87篇
  2000年   79篇
  1999年   83篇
  1998年   38篇
  1997年   39篇
  1996年   38篇
  1995年   28篇
  1994年   33篇
  1993年   38篇
  1992年   72篇
  1991年   55篇
  1990年   69篇
  1989年   61篇
  1988年   39篇
  1987年   49篇
  1986年   44篇
  1985年   33篇
  1984年   40篇
  1983年   20篇
  1982年   19篇
  1981年   17篇
  1980年   17篇
  1979年   41篇
  1978年   23篇
  1977年   26篇
  1976年   32篇
  1975年   19篇
  1974年   28篇
  1973年   19篇
  1972年   18篇
排序方式: 共有2849条查询结果,搜索用时 15 毫秒
121.
Two new photoaffinity derivatives of polyamines have been synthesized by the reaction of spermine or spermidine with methyl 4-azidobenzimidate. The new compounds were purified chromatographically and characterized by several methods including proton magnetic resonance spectroscopy. The spermine derivative is N1-ABA-spermine [(azidobenzamidino)spermine], and the spermidine derivative is a mixture of N1- and N8-ABA-spermidine. ABA-spermine stabilizes nucleosome core particles in thermal denaturation experiments, with similar but not identical effects when compared with the parent polyamine, spermine. In circular dichroism experiments, ABA-spermine was capable of producing a B----Z transition in poly(dG-m5dC) at a concentration of 30 microM, compared with 5 microM required to produce the same effect with spermine. On the other hand, ANB-spermine [(azidonitrobenzoyl)spermine; Morgan, J. E., Calkins, C. C., & Matthews, H. R. (1989) Biochemistry 28, 5095-5106] stabilized the B form of poly(dG-br5dC). ABA-spermine is a potent inhibitor of ornithine decarboxylase from Escherichia coli, giving 50% inhibition at 0.12 mM, while ANB-spermine is a modest inhibitor, comparable to spermine or spermidine. Under conditions of nitrogen-limited growth, yeast take up ABA-spermine and ABA-spermidine at approximately one-third to half the rate of spermidine or spermine. In contrast, ANB-spermine was not significantly taken up. The photoaffinity polyamines were used to photoaffinity label the DNA in nucleosome core particles, and the sites of labeling were determined by exonuclease protection. All photoaffinity reagents showed both nonspecific labeling and specific sites of higher occupancy. However, the positions of the sites varied: the ANB-spermine sites confirmed those previously reported (Morgan et al., 1989); the ABA-spermine and ABA-spermidine sites were spaced at 9.8 bp intervals from the 3' end of each DNA strand. This observation, together with the effect of spermine on the circular dichroism of DNA in nucleosome core particles, implies that polyamines alter the helical twist of DNA in nucleosome core particles. The ABA-polyamines are offered as general-purpose photoaffinity polyamine reagents.  相似文献   
122.
The leukocyte-common antigen (CD45) is a transmembrane protein tyrosine phosphatase expressed uniquely by cells of hematopoietic origin. There are multiple isoforms of CD45 that are generated by the variable use of three exons (exons 4-6). The use of the variable exons results in changes near the amino-terminus of the mature glycoprotein. The gene is located on chromosome 1 for both human and mouse in a region that is homologous between these two species. This conserved linkage group contains a number of genes of immunological interest, such as the genes for complement regulatory proteins and the FCG2 receptor. Yeast artificial chromosomes provide a vector system in which large fragments of foreign DNA can be isolated and are suited to long-range physical mapping. To this end, three yeast artificial chromosomes containing the human CD45 gene have been isolated and characterized. They overlap to span 475 kb, establishing the largest physical map for DNA within the conserved linkage group. The CD45 gene is entirely encoded within one yeast artificial chromosome clone as determined by mapping with cDNA probes. A mouse B cell line transfected with this YAC clone expressed the low-molecular-weight isoform of the protein into the cell surface. The size of the human CD45 gene was determined to be approximately 120 +/- 10 kb.  相似文献   
123.
Crystals of bacteriophage T4 lysozyme used for structural studies are routinely grown from concentrated phosphate solutions. It has been found that crystals in the same space group can also be grown from solutions containing 0.05 M imidazole chloride, 0.4 M sodium choride, and 30% polyethylene glycol 3500. These crystals, in addition, can also be equilibrated with a similar mother liquor in which the sodium chloride concentration is reduced to 0.025 M. The availability of these three crystal variants has permitted the structure of T4 lysozyme to be compared at low, medium, and high ionic strength. At the same time the X-ray structure of phage T4 lysozyme crystallized from phosphate solutions has been further refined against a new and improved X-ray diffraction data set. The structures of T4 lysozyme in the crystals grown with polyethylene glycol as a precipitant, regardless of the sodium chloride concentration, were very similar to the structure in crystals grown from concentrated phosphate solutions. The main differences are related to the formation of mixed disulfides between cysteine residues 54 and 97 and 2-mercaptoethanol, rather than to the differences in the salt concentration in the crystal mother liquor. Formation of the mixed disulfide at residue 54 resulted in the displacement of Arg-52 and the disruption of the salt bridge between this residue and Glu-62. Other than this change, no obvious alterations in existing salt bridges in T4 lysozyme were observed. Neither did the reduction in the ionic strength of the mother liquor result in the formation of new salt bridge interactions. These results are consistent with the ideas that a crystal structure determined at high salt concentrations is a good representation of the structure at lower ionic strengths, and that models of electrostatic interactions in proteins that are based on crystal structures determined at high salt concentrations are likely to be relevant at physiological ionic strengths.  相似文献   
124.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   
125.
A simple, sensitive method for measuring Nτ-methylhistidine in biological samples using a deuterated internal standard and methane chemical ionization gas chromatography-mass spectrometry is described. After sample preparation, a single analysis can be completed in 3 min; analysis in duplicate, including sample preparation for 40 samples, can be completed at a rate of 15 min per sample. Nanomole amounts of Nτ-mmethylhistidine in urine or plasma samples are determined with a precision of 0.5%. Picomole amounts, released during in vitro rat epitrochlaris muscle incubations, are measured with a precision of 10%.  相似文献   
126.
The assignment of two histidine proton resonances in the proton NMR spectrum of ribonuclease A has been made by forming a paramagnetic complex between pentaammineruthenium(III) and the N-3 nitrogen of a single histidine residue. Reaction of chloropentaammineruthenium(III)dichloride with ribonuclease A in 0.1 m Tris-HCl, pH 7.0, 25°C yields a variety of products in which various histidine residues have been labeled. Cation-exchange chromatography affords the isolation of a specific derivative, labeled at a single histidine residue, that retains 66% of the activity toward the hydrolysis of 2′,3′-cyclic CMP. The site of labeling was determined by peptide mapping to be histidine 105. The binding of ruthenium results in the disappearance of both a histidine C-2 and a C-4 proton resonance from the downfield region of the proton NMR spectrum, as expected from model compound studies. The assignment of these two resonances to histidine 105 is in agreement with a previous assignment (J. L. Markley, 1975, Biochemistry, 14, 3546–3554), thereby demonstrating the potential utility of this ruthenium reagent in the assignment of histidine resonances in the proton NMR spectra of other proteins.  相似文献   
127.
Phage lysozyme has catalytic activity similar to that of hen egg white lysozyme, but the amino acid sequences of the two enzymes are completely different.The binding to phage lysozyme of several saccharides including N-acetylglucosamine (GlcNAc), N-acetylmuramic acid (MurNAc) and (GlcNAc)3 have been determined crystallographically and shown to occupy the pronounced active site cleft. GlcNAc binds at a single location analogous to the C site of hen egg white lysozyme. MurNAc binds at the same site. (GlcNAc)3 clearly occupies sites B and C, but the binding in site A is ill-defined.Model building suggests that, with the enzyme in the conformation seen in the crystal structure, a saccharide in the normal chair configuration cannot be placed in site D without incurring unacceptable steric interference between sugar and protein. However, as with hen egg white lysozyme, the bad contacts can be avoided by assuming the saccharide to be in the sofa conformation. Also Asp20 in T4 lysozyme is located 3 Å from carbon C(1) of saccharide D, and is in a position to stabilize the developing positive charge on a carbonium ion intermediate. Prior genetic evidence had indicated that Asp20 is critically important for catalysis. This suggests that in phage lysozyme catalysis is promoted by a combination of steric and electronic effects, acting in concert, The enzyme shape favors the binding in site D of a saccharide with the geometry of the transition state, while Asp20 stabilizes the positive charge on the oxocarbonium ion of this intermediate. Tn phage lysozyme, the identity of the proton donor is uncertain. In contrast to hen egg white lysozyme, where Glu35 is 3 Å from the glycosidic DOE bond, and is in a non-polar environment, phage lysozyme has an ion pair, Glull … Arg145, 5 Å away from the glycosidic oxygen. Possibly Glull undergoes a conformational adjustment in the presence of bound substrate, and acts as the proton donor. Alternatively, the proton might come from a bound water molecule.  相似文献   
128.
129.
The chromatographic profiles of 20 aminoacyl-tRNAs from rabbit liver were compared to those of rabbit reticulocytes by reverse phase chromatography and the chromatographic profiles of 20-aminoacyl-tRNAs from bovine liver were compared to those of bovine brain. The two rabbit tissues showed significant differences in the elution profiles of most aminoacyl-tRNAs, while the elution profiles of the aminoacyl-tRNAs from the bovine tissues showed fewer differences. The patterns of codon recognition of several aminoacyl-tRNAs fractionated from rabbit reticulocytes have also been compared to those fractionated from rabbit liver.  相似文献   
130.
The role of metabolic activation in the binding of polychlorinated biphenyls (PCBs) to cellular macromolecules was investigated in vivo by comparing the relative binding of 2,4,5,2′,4′,5′-[U-14C]hexachlorobiphenyl (2,4,5), a slowly metabolized PCB, with that of 2,3,6,2′,3′,6′-[U-14C]hexachlorobiphenyl (2,3,6), a rapidly metabolized PCB, and the appropriate controls. Each hexachlorobiphenyl was administered to mice, orally for 5 days (7.28 mg/kg/day). Following the dosing schedule, animals were killed at 1, 5 and 8 days. The concentration of each PCB was determined in liver, muscle and kidney and in purified macromolecules isolated from those tissues. The concentration of 2,4,5 was consistently higher than the concentration of 2,3,6 in all tissues studied. However, the amount of 2,3,6 bound to the purified macromolecules was consistently at least one order of magnitude greater than that of 2,4,5. The greatest binding was observed in RNA followed by protein and DNA, respectively. The purity of the macromolecules and the presence of PCB-derived radioactivity at the monomer level were confirmed. This is the first report of 14C-labeled PCB being bound to purified RNA, DNA, and proteins isolated from the tissues of animals treated in vivo. The binding is thought to be covalent and to be the result of metabolic activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号