首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3908篇
  免费   380篇
  国内免费   2篇
  2022年   21篇
  2021年   64篇
  2020年   40篇
  2019年   52篇
  2018年   49篇
  2017年   44篇
  2016年   71篇
  2015年   112篇
  2014年   149篇
  2013年   200篇
  2012年   227篇
  2011年   205篇
  2010年   150篇
  2009年   107篇
  2008年   180篇
  2007年   187篇
  2006年   181篇
  2005年   159篇
  2004年   176篇
  2003年   149篇
  2002年   154篇
  2001年   106篇
  2000年   93篇
  1999年   95篇
  1998年   64篇
  1997年   47篇
  1996年   47篇
  1995年   35篇
  1994年   46篇
  1993年   49篇
  1992年   79篇
  1991年   61篇
  1990年   79篇
  1989年   67篇
  1988年   50篇
  1987年   55篇
  1986年   50篇
  1985年   44篇
  1984年   48篇
  1983年   26篇
  1982年   25篇
  1981年   26篇
  1980年   30篇
  1979年   47篇
  1978年   27篇
  1977年   31篇
  1976年   35篇
  1975年   20篇
  1974年   39篇
  1973年   24篇
排序方式: 共有4290条查询结果,搜索用时 15 毫秒
81.
The biochemical events associated with the heat shock response are not well understood in any organism, nor have the signals that initiate the induction of heat shock protein synthesis been identified. In this work, we demonstrate that the rate of serine catabolism of Escherichia coli cells grown in glucose minimal medium supplemented with serine is elevated three- to sevenfold when the growth temperature is shifted from 37 to 44 degrees C. Elevations in growth temperature and mutations or treatments that lead to elevated basal rates of serine catabolism at 37 degrees C result in the excretion into the culture medium of acetate derived from exogenous serine. Increases in the basal level of serine catabolism at 37 degrees C do not per se induce a heat shock response but are associated with abnormalities in the pattern of induction of heat shock polypeptides following a temperature shift. We postulate that the events responsible for or resulting from the elevation in serine catabolism associated with a shift-up in temperature modulate the induction of 3 of the 17 heat shock polypeptides identified in E. coli. These observations suggest that heat shock diverts serine away from the production of glycine and C1 units, which are required for initiation of protein synthesis and for nucleotide biosynthesis, and towards acetyl coenzyme A and acetate.  相似文献   
82.
A gene encoding cobalamin-dependent methionine synthase (EC 2.1.1.13) has been isolated from a plasmid library of Escherichia coli K-12 DNA by complementation to methionine prototrophy in an E. coli strain lacking both cobalamin-dependent and -independent methionine synthase activities (RK4536:metE, metHH). Maxicell expression of a series of plasmids containing deletions in the metH structural gene was employed to map the position and orientation of the gene on the cloned DNA fragment. A 6.3-kilobase EcoRI-SalI fragment containing the gene was cloned into the sequencing vector pGEM3B for double-stranded DNA sequencing; the MetH coding region consists of 3372 nucleotides. The enzyme was purified from an overproducing strain of E. coli harboring the recombinant plasmid, in which the level of methionine synthase was elevated 30- to 40-fold over wild-type E. coli. Recombinant enzyme is a protein of 123,640 molecular weight and has a turnover number of 1,450 min-1 in the standard assay. These values are to be compared with previously reported values of 133,000 for the molecular weight and 1,240-1,560 min-1 for the turnover number of the homogenous enzyme purified from a wild-type strain of E. coli B (Frasca, V., Banerjee, R. V., Dunham, W. R., Sands, R. H., and Matthews, R. G. (1988) Biochemistry 27, 8458-8465). Limited proteolysis of the native enzyme with trypsin resulted in loss of enzyme activity but retention of bound cobalamin on a peptide fragment of 28,000 molecular weight. This fragment has been shown to extend from residue 643 to residue 900 of the 1124-residue deduced amino acid sequence.  相似文献   
83.
The magnitude of immunologic defects observed in HIV-1-infected individuals before the development of overt AIDS is disproportionately high in comparison to the levels of infectious virus in these patients--suggesting that factors other than direct virus-induced cytopathology may be involved. With this in mind, we investigated the immunologic consequences of the interaction between purified HIV-1 gp120 and the CD4 molecules expressed by uncommitted as well as Ag-specific lymphocytes. HIV-1 gp120 exhibited a dose-dependent immunosuppressive effect on: 1) Ag-driven proliferation of cloned CD4+ lymphocytes, 2) OKT3-driven proliferation of cloned CD4+ lymphocytes, and 3) cytolytic activity of CD4+, EBV-specific CTL. Thus, HIV-1 gp120 can, in a manner similar to OKT4A antibodies, suppress T cell activation and the expression of cytolytic activities through its interaction with CD4. Additionally, activated CD4+ lymphoblasts can be rendered susceptible to immune cytolysis by virtue of their binding of purified gp120. This "targeting" of activated lymphoblasts can occur with levels of gp120 far below that which is needed to saturate all OKT4A-defined CD4 epitopes. Adsorbed gp120 could be demonstrated on the surface of these cells for up to 12 h, a sufficient time for interaction with host cytolytic elements. The data from these in vitro modeling experiments highlight one of many potential mechanisms of HIV-1 induced immunosuppression and lymphocyte destruction that can occur in the absence of infectious virus and that is based on the unique interaction between HIV-1 gp120 and its cellular receptor, CD4.  相似文献   
84.
Three aspartate aminotransferase isoenzymes were identified from extracts of carrot (Daucus carota L.) cell suspension cultures. These isoenzymes were separated by DEAE chromatography and were analyzed on native gradient polyacrylamide gels. The relative molecular weights of the isoenzymes were 111,000 ± 5000, 105,000 ± 5000, and 94,000 ± 4000 daltons; they were designated forms I, II, and III, respectively. Form I, the predominant form, has been purified to apparent homogeneity (>300-fold) using immunoaffinity chromatography with rabbit anti-pig AAT antibodies. Form I has a subunit size of 43,000 Mr, as determined on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Isoelectric focusing (IEF)-PAGE has resolved three bands at a pl of approximately 5.2. Form I may be composed of subunits of similar molecular weight and different charges, and the three bands with AAT activity on the IEF-PAGE gel are a combination of hetero- and homodimers. Form I has a broad pH optimum of 7.5 to 10.0. Km values of 23.6, 2.8, 0.05, and 0.22 millimolar were obtained for glutamate, aspartate, oxaloacetate, and α-ketoglutarate, respectively. The mode of action is a ping-pong-bi-bi mechanism.  相似文献   
85.
Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS.  相似文献   
86.
Crystal structures are known for three members of the bacterial neutral protease family: thermolysin from Bacillus thermoproteolyticus (TLN), the neutral protease from Bacillus cereus (NEU), and the elastase of Pseudomonas aeruginosa (PAE), both in free and ligand-bound forms. Each enzyme consists of an N-terminal and C-terminal domain with the active site formed at the junction of the two domains. Comparison of the different molecules reveals that the structure within each domain is well conserved, but there are substantial hinge-bending displacements (up to 16 degrees) of one domain relative to the other. These domain motions can be correlated with the presence or absence of bound inhibitor, as was previously observed in the specific example of PAE [Thayer, M.M., Flaherty, K.M., & McKay, D.B. (1991) J. Biol. Chem. 266, 2864-2871]. The binding of inhibitor appears to be associated with a reduction of the domain hinge-bending angle by 6-14 degrees and a closure of the "jaws" of the active site cleft by about 2 A. Crystallographic refinement of the structure of thermolysin suggests that electron density seen in the active site of the enzyme in the original structure determination probably corresponds to a bound dipeptide. Thus, the crystal structure appears to correspond to an enzyme-inhibitor or enzyme-product complex, rather than the free enzyme, as has previously been assumed.  相似文献   
87.
The cis/trans isomerization of the peptide bond preceding proline residues in proteins can limit the rate at which a protein folds to its native conformation. Mutagenic analyses of dihydrofolate reductase (DHFR) from Escherichia coli show that this isomerization reaction can be intramolecularly catalyzed by a side chain from an amino acid which is distant in sequence but adjacent in the native conformation. The guanidinium NH2 nitrogen of Arg 44 forms one hydrogen bond to the imide nitrogen and a second to the carbonyl oxygen of Pro 66 in wild-type DHFR. Replacement of Arg 44 with Leu results in a change of the nature of the two slow steps in refolding from being limited by the acquisition of secondary and/or tertiary structure to being limited by isomerization. The simultaneous replacement of Pro 66 with Ala (i.e., the Leu 44/Ala 66 double mutant) eliminates this isomerization reaction and once again makes protein folding the limiting process. Apparently, one or both of the hydrogen bonds between Arg 44 and Pro 66 accelerate the isomerization of the Gln 65-Pro 66 peptide bond. The replacement of Arg 44 with Leu affects the kinetics of the slow folding reactions in a fashion which indicates that the crucial hydrogen bonds form in the transition states for the rate-limiting steps in folding.  相似文献   
88.
A newly-developed field-portable multi-flash kinetic fluorimeter for measuring the kinetics of the microsecond to millisecond reactions of the oxidizing and reducing sides of photosystem 2 in leaves of intact plants is described and demonstrated. The instrumental technique is a refinement of that employed in the double-flash kinetic fluorimeter (Joliot 1974 Biochim Biophys Acta 357: 439–448) where a low-intensity short-duration light pulse is used to measure the fluorescence yield changes following saturating single-turnover light pulses. The present instrument uses a rapid series of short-duration (2 s) pulses to resolve a complete microsecond to millisecond time-scale kinetic trace of fluorescence yield changes after each actinic flash. Differential optics, using a matrix of optical fibers, allow very high sensitivity (noise levels about 0.05% Fmax) thus eliminating the need for signal averaging, and greatly reducing the intensity of light required to make a measurement. Consequently, the measuring pulses have much less actinic effect and an entire multi-point trace (seven points) excites less than 1% of the reaction centers in a leaf. In addition, bu combining the actinic and measuring pulse light in the optical fiber network, the tail of the actinic flash can be compensated for, allowing measurements of events as rapidly as 20 s after the actinic flash. This resolution makes practical the routine measurement of the microsecond turnover kinetics of the oxygen evolving complex in leaves of intact plants in the field. The instrument is demonstrated by observing flash number dependency and inhibitor sensitivity of the induction and decay kinetics of flash-induced fluorescence transients in leaves of intact plants. From these traces the period-two oscillations associated with the turnover of the two-electron gate and the period-four oscillations associated with the turnover of the oxygen evolving complex can be observed. Applications of the instrument to extending our knowledge of chloroplast function to the whole plant, the effects on plants of environmental stress, herbicides, etc, and possible applications to screening of mutants are discussed.Abbreviations DCMU 3-(3,4-Dichlorophenol)-1,1-dimethylurea - PS 2 photosystem 2 - PS 1 photosystem 1 - P680 primary electron donor of the PS 2 reaction center - QA primary acceptor quinone of PS 2 - QB secondary acceptor quinone of PS 2 - CCCP carbonyl cyanide-m-chlorophenylhydrazone - Yz donor to P680 + - F0 level of fluorescence with all PS 2 centers open - Fmax maximum level of fluorescence with all PS 2 centers closed - P680QA Open reaction centers with P680 reduced and QA oxidized (low fluorescence) - P680QA - Closed reaction centers, in which P680 is reduced (high fluorescence) - P680 +QA - Closed reaction centers, in which P680 is oxidized (low fluorescence)  相似文献   
89.
90.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号