首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28140篇
  免费   2420篇
  国内免费   10篇
  2023年   124篇
  2022年   310篇
  2021年   716篇
  2020年   405篇
  2019年   526篇
  2018年   605篇
  2017年   539篇
  2016年   888篇
  2015年   1464篇
  2014年   1587篇
  2013年   1788篇
  2012年   2288篇
  2011年   2321篇
  2010年   1486篇
  2009年   1278篇
  2008年   1702篇
  2007年   1757篇
  2006年   1554篇
  2005年   1494篇
  2004年   1393篇
  2003年   1187篇
  2002年   1124篇
  2001年   252篇
  2000年   171篇
  1999年   226篇
  1998年   276篇
  1997年   183篇
  1996年   181篇
  1995年   176篇
  1994年   163篇
  1993年   169篇
  1992年   123篇
  1991年   107篇
  1990年   119篇
  1989年   120篇
  1988年   88篇
  1987年   93篇
  1986年   83篇
  1985年   99篇
  1984年   98篇
  1983年   104篇
  1982年   87篇
  1981年   96篇
  1980年   74篇
  1979年   69篇
  1978年   63篇
  1977年   61篇
  1976年   58篇
  1975年   46篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
The bacterial flagellar motor powers the rotation that propels the swimming bacteria. Rotational torque is generated by harnessing the flow of ions through ion channels known as stators which couple the energy from the ion gradient across the inner membrane to rotation of the rotor. Here, we used error‐prone PCR to introduce single point mutations into the sodium‐powered Vibrio alginolyticus/Escherichia coli chimeric stator PotB and selected for motors that exhibited motility in the presence of the sodium‐channel inhibitor phenamil. We found single mutations that enable motility under phenamil occurred at two sites: (i) the transmembrane domain of PotB, corresponding to the TM region of the PomB stator from V. alginolyticus and (ii) near the peptidoglycan binding region that corresponds to the C‐terminal region of the MotB stator from E. coli. Single cell rotation assays confirmed that individual flagellar motors could rotate in up to 100 µM phenamil. Using phylogenetic logistic regression, we found correlation between natural residue variation and ion source at positions corresponding to PotB F22Y, but not at other sites. Our results demonstrate that it is not only the pore region of the stator that moderates motility in the presence of ion‐channel blockers.  相似文献   
992.
Reviews in Fish Biology and Fisheries - While otoliths are considered the most reliable structure to accurately age fish, a variety of otolith preparation techniques are available, which have...  相似文献   
993.
Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plant Medicago truncatula for Lycaeides melissa caterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation in M. truncatula explains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multiple M. truncatula alleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect of M. truncatula alleles on L. melissa performance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation in M. truncatula has a substantial effect on the successful development of L. melissa caterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect.  相似文献   
994.
Free‐standing single‐layer β‐sheets are extremely rare in naturally occurring proteins, even though β‐sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single‐layer, anti‐parallel β‐sheet proteins, comprised of three or four twisted β‐hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of β‐sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent‐exposed tyrosine residues, was identified on the concave surface of the β‐sheet. These new modular single‐layer β‐sheet proteins may serve as a new model system for studying folding and design of β‐rich proteins.  相似文献   
995.
Natural populations often exist in spatially diverse environments and may experience variation in the strength and targets of natural selection across their ranges. Drosophila provides an excellent opportunity to study the effects of spatially varying selection in natural populations, as both Drosophila melanogaster and Drosophila simulans live across a wide range of environments in North America. Here, we characterize patterns of variation in transposable elements (TEs) from six populations of D. melanogaster and nine populations of D. simulans sampled from multiple latitudes across North America. We find a nearly twofold excess of TEs in D. melanogaster relative to D. simulans, with this difference largely driven by TEs segregating at the lowest and highest allele frequencies. We find no effect of latitude on either total TE abundance or average TE allele frequencies in either species. Moreover, we show that, as a class of mutations, the most common patterns of TE variation do not coincide with the sampled latitudinal gradient, nor are they consistent with local adaptation acting on environmental differences found in the most extreme latitudes. We also do not find a cline in ancestry for North American D. melanogaster—for either TEs or single nucleotide polymorphisms—suggesting a limited role for demography in shaping patterns of TE variation. Though we find little evidence for widespread clinality among TEs in Drosophila, this does not necessarily imply a limited role for TEs in adaptation. We discuss the need for improved models of adaptation to large‐scale environmental heterogeneity, and how these might be applied to TEs.  相似文献   
996.
Despite advances in restoration of degraded lands around the world, native plants are still underutilized. Selection of appropriate plant materials is a critical factor in determining plant establishment and persistence. To better inform decision‐making, we examined cold‐hardiness dynamics, flowering phenology, and survival among five geographically distinct sulfur‐flower buckwheat (Polygonaceae: Eriogonum umbellatum Torr.) populations in a common garden. LT50 (a measure of freezing injury) was determined every 6 weeks across a complete year; one population was also evaluated at the source. Cold‐hardiness dynamics were similar across populations, with annual fluctuations in mean LT50 exceeding 40°C. Rate of deacclimation (i.e. loss of cold tolerance) in spring varied across populations and was not related to the elevation from which a population came. Plants were less cold hardy in October 2014 compared to October 2013, likely reflecting a response to colder local conditions in 2013. Although the range of LT50 was similar for a single comparison of common garden versus wild‐grown plants, wild‐grown plants acclimated and deacclimated earlier than common garden‐grown plants. Plants derived from a low‐elevation population showed delayed flowering phenology, while high‐elevation populations showed earlier flowering phenology, with one high‐elevation population having the lowest survival rate in the common garden. These results suggest that while considerable plasticity in seasonal cold‐hardiness dynamics occur, population variability in deacclimation and flowering phenology have implications for selection and movement of sulfur‐flower buckwheat for ecological restoration.  相似文献   
997.
Larger and more frequent disturbances are motivating efforts to accelerate recovery of foundational perennial species by focusing efforts into establishing island patches to sustain keystone species and facilitate recovery of the surrounding plant community. Evaluating the variability in abiotic and biotic factors that contribute to differences in survival and establishment can provide useful insight into the relative importance of these factors. In the western United States, severe degradation of the sagebrush steppe has motivated substantial efforts to restore native perennial cover, but success has been mixed. In this study, we evaluated survival of more than 3,000 sagebrush seedlings transplanted on 12 patches totaling 650 ha within a 113,000 ha burn area, and related the survival to organismal and subtaxonomic traits, and to landscape variables. Big sagebrush has high intraspecific diversity attributed to subspecies and cytotypes identifiable through ultraviolet (UV)‐induced fluorescence, length:width of leaves, or genome size (ploidy). Of these organismal traits, survival was related only to UV fluorescence, and then only so when landscape variables were excluded from analyses. The most significant landscape variable affecting survival was soil taxonomic subgroup, with much lower survival where buried restrictive layers reduce deep water infiltration. Survival also decreased with greater slope steepness, exotic annual grass cover, and burn severity. Survival was optimal where perennial bunchgrasses comprised 8–14% of total cover. These soil, topographic, and community condition factors revealed through monitoring of landscape‐level treatments can be used to explain the success of plantings and to strategically plan future restoration projects.  相似文献   
998.
Mosquito vectors play a crucial role in the distribution of avian Plasmodium parasites worldwide. At northern latitudes, where climate warming is most pronounced, there are questions about possible changes in the abundance and distribution of Plasmodium parasites, their vectors, and their impacts to avian hosts. To better understand the transmission of Plasmodium among local birds and to gather baseline data on potential vectors, we sampled a total of 3,909 mosquitoes from three locations in south‐central Alaska during the summer of 2016. We screened mosquitoes for the presence of Plasmodium parasites using molecular techniques and estimated Plasmodium infection rates per 1,000 mosquitoes using maximum likelihood methods. We found low estimated infection rates across all mosquitoes (1.28 per 1,000), with significantly higher rates in Culiseta mosquitoes (7.91 per 1,000) than in Aedes mosquitoes (0.57 per 1,000). We detected Plasmodium in a single head/thorax sample of Culiseta, indicating potential for transmission of these parasites by mosquitoes of this genus. Plasmodium parasite DNA isolated from mosquitoes showed a 100% identity match to the BT7 Plasmodium lineage that has been detected in numerous avian species worldwide. Additionally, microscopic analysis of blood smears collected from black‐capped chickadees (Poecile atricapillus) at the same locations revealed infection by parasites preliminarily identified as Plasmodium circumflexum. Results from our study provide the first information on Plasmodium infection rates in Alaskan mosquitoes and evidence that Culiseta species may play a role in the transmission and maintenance of Plasmodium parasites in this region.  相似文献   
999.

Recombinant monoclonal antibodies are predominantly produced in mammalian cell culture bioprocesses. Post-translational modifications affect the micro-heterogeneity of the product and thereby influence important quality attributes, such as stability, solubility, pharmacodynamics and pharmacokinetics. The analysis of the surface charge distribution of monoclonal antibodies provides aggregated information about these modifications. In this work, we established a direct injection pH gradient cation exchange chromatography method, which determines charge heterogeneity from cell culture supernatant without any purification steps. This tool was further applied to monitor processes that were performed under certain process conditions. Concretely, we were able to provide insights into charge variant formation during a fed-batch process of a Chinese hamster ovary cell culture, in turn producing a monoclonal antibody under varying temperatures and glucose feed strategies. Glucose concentration impacted the total emergence of acidic variants, whereas the variation of basic species was mainly dependent on process temperature. The formation rates of acidic species were described with a second-order reaction, where a temperature increase favored the conversion. This platform method will aid as a sophisticated optimization tool for mammalian cell culture processes. It provides a quality fingerprint for the produced mAb, which can be tested, compared to the desired target and confirmed early in the process chain.

  相似文献   
1000.
Plant Ecology - Ecological multifunctionality quantifies the functional performance of various important plant traits and increases with growing structural habitat heterogeneity, number of plant...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号