首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27348篇
  免费   3104篇
  国内免费   8篇
  2023年   123篇
  2022年   313篇
  2021年   726篇
  2020年   394篇
  2019年   508篇
  2018年   585篇
  2017年   528篇
  2016年   843篇
  2015年   1377篇
  2014年   1481篇
  2013年   1581篇
  2012年   2173篇
  2011年   2146篇
  2010年   1330篇
  2009年   1167篇
  2008年   1547篇
  2007年   1600篇
  2006年   1369篇
  2005年   1270篇
  2004年   1185篇
  2003年   995篇
  2002年   894篇
  2001年   408篇
  2000年   362篇
  1999年   327篇
  1998年   245篇
  1997年   194篇
  1996年   167篇
  1995年   169篇
  1994年   171篇
  1993年   161篇
  1992年   243篇
  1991年   205篇
  1990年   213篇
  1989年   246篇
  1988年   344篇
  1987年   207篇
  1986年   155篇
  1985年   176篇
  1984年   149篇
  1983年   143篇
  1982年   116篇
  1981年   101篇
  1980年   111篇
  1979年   120篇
  1978年   118篇
  1977年   123篇
  1976年   96篇
  1974年   99篇
  1973年   94篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Neuropilins (Nrp) are type I transmembrane proteins that function as receptors for vascular endothelial growth factor (VEGF) and class III Semaphorin (Sema3) ligand families. Sema3s function as potent endogenous angiogenesis inhibitors but require proteolytically processing by furin to compete with VEGF for Nrp binding. This processing liberates a C-terminal arginine (CR) that is necessary for binding to the b1 domain of Nrp, a common feature shared by Nrp ligands. The CR is necessary but not sufficient for potent Nrp inhibition, and the role of upstream residues is unknown. We demonstrate that the second-to-last residue (C-1), immediately upstream of the CR, plays a significant role in controlling competitive ligand binding by orienting the C-terminus for productive Nrp binding. With the use of a peptide library derived from Sema3F, C-1 residues that preferentially adopt an extended bound-like conformation, including proline and β-branched amino acids, were found to produce the most avid competitors. Consistent with this, analysis of the binding thermodynamics revealed that more favorable entropy is responsible for the observed binding enhancement of C-1 proline. We further tested the effect of the C-1 residue on Sema3F processing by furin and found an inverse relationship between processing and inhibitory potency. Analysis of all Sema3 family members reveals two non-equivalent furin processing sites differentiated by the presence of either a C-1 proline or a C-1 arginine and resulting in up to a 40-fold difference in potency. These data reveal a novel regulatory mechanism of Sema3 activity and define a fundamental mechanism for preferential Nrp binding.  相似文献   
992.
The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nm) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.  相似文献   
993.
Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cβ3 (PLCβ3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway.  相似文献   
994.
It is unclear why mutations in the filament-forming tail of myosin heavy chain (MHC) cause hypertrophic or dilated cardiomyopathy as these mutations should not directly affect contraction. To investigate this, we first investigated the impact of five hypertrophic cardiomyopathy-causing (N1327K, E1356K, R1382W, E1555K, and R1768K) and one dilated cardiomyopathy-causing (R1500W) tail mutations on their ability to incorporate into muscle sarcomeres in vivo. We used adenoviral delivery to express full-length wild type or mutant enhanced GFP-MHC in isolated adult cardiomyocytes. Three mutations (N1327K, E1356K, and E1555K) reduced enhanced GFP-MHC incorporation into muscle sarcomeres, whereas the remainder had no effect. No mutations significantly affected contraction. Fluorescence recovery after photobleaching showed that fluorescence recovery for the mutation that incorporated least well (N1327K) was significantly faster than that of WT with half-times of 25.1 ± 1.8 and 32.2 ± 2.5 min (mean ± S.E.), respectively. Next, we determined the effects of each mutation on the helical properties of wild type and seven mutant peptides (7, 11, or 15 heptads long) from the myosin tail by circular dichroism. R1382W and E1768K slightly increased the α-helical nature of peptides. The remaining mutations reduced α-helical content, with N1327K showing the greatest reduction. Only peptides containing residues 1301–1329 were highly α-helical suggesting that this region helps in initiation of coiled coil. These results suggest that small effects of mutations on helicity translate into a reduced ability to incorporate into sarcomeres, which may elicit compensatory hypertrophy.  相似文献   
995.
Discovering proteins that modulate Akt signaling has become a critical task, given the oncogenic role of Akt in a wide variety of cancers. We have discovered a novel diacylglycerol signaling pathway that promotes dephosphorylation of Akt. This pathway is regulated by diacylglycerol kinase δ (DGKδ). In DGKδ-deficient cells, we found reduced Akt phosphorylation downstream of three receptor tyrosine kinases. Phosphorylation upstream of Akt was not affected. Our data indicate that PKCα, which is excessively active in DGKδ-deficient cells, promotes dephosphorylation of Akt through pleckstrin homology domain leucine-rich repeats protein phosphatase (PHLPP) 2. Depletion of either PKCα or PHLPP2 rescued Akt phosphorylation in DGKδ-deficient cells. In contrast, depletion of PHLPP1, another Akt phosphatase, failed to rescue Akt phosphorylation. Other PHLPP substrates were not affected by DGKδ deficiency, suggesting mechanisms allowing specific modulation of Akt dephosphorylation. We found that β-arrestin 1 acted as a scaffold for PHLPP2 and Akt1, providing a mechanism for specificity. Because of its ability to reduce Akt phosphorylation, we tested whether depletion of DGKδ could attenuate tumorigenic properties of cultured cells and found that DGKδ deficiency reduced cell proliferation and migration and enhanced apoptosis. We have, thus, discovered a novel pathway in which diacylglycerol signaling negatively regulates Akt activity. Our collective data indicate that DGKδ is a pertinent cancer target, and our studies could lay the groundwork for development of novel cancer therapeutics.  相似文献   
996.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.  相似文献   
997.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   
998.
Although optimizing the resistance profile of an inhibitor can be challenging, it is potentially important for improving the long term effectiveness of antiviral therapy. This work describes our rational approach toward the identification of a macrocyclic acylsulfonamide that is a potent inhibitor of the NS3-NS4A proteases of all hepatitis C virus genotypes and of a panel of genotype 1-resistant variants. The enhanced potency of this compound versus variants D168V and R155K facilitated x-ray determination of the inhibitor-variant complexes. In turn, these structural studies revealed a complex molecular basis of resistance and rationalized how such compounds are able to circumvent these mechanisms.  相似文献   
999.
Expression of the receptor tyrosine kinase-like orphan receptor 2 (Ror2) has been identified in an increasing array of tumor types and is known to play a role as an important mediator of Wnt signaling cascades. In this study, we aimed to clarify Ror2 interactions with the Wnt pathways within the context of renal cell carcinoma (RCC). An examination of Ror2 expression in primary human RCC tumors showed a significant correlation with several Wnt signaling genes, including the classical feedback target gene Axin2. We provide evidence that Ror2 expression results in a partially activated state for canonical Wnt signaling through an increased signaling pool of β-catenin, leading to an enhancement of downstream target genes following Wnt3a stimulation in both renal and renal carcinoma-derived cells. Additionally, inhibition of low-density lipoprotein receptor-related protein 6 (LRP6) with either siRNA or dickkopf decreased the response to Wnt3a stimulation, but no change was seen in the increased β-catenin pool associated with Ror2 expression, suggesting that LRP6 cofactor recruitment is necessary for a Wnt3a-induced signal but that it does not participate in the Ror2 effect on β-catenin signaling. These results highlight a new role for Ror2 in conveying a tonic signal to stabilize soluble β-catenin and create a poised state of enhanced responsiveness to Wnt3a exogenous signals in RCC.  相似文献   
1000.
Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6+/+ and IL-6−/− mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6−/− compared with IL-6+/+ bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6−/− earlier than IL-6+/+ marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6−/− marrow. In the skeletal system, although intermittent PTH administration to IL-6+/+ and IL-6−/− mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号