首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18944篇
  免费   1774篇
  国内免费   8篇
  20726篇
  2024年   27篇
  2023年   117篇
  2022年   269篇
  2021年   621篇
  2020年   340篇
  2019年   443篇
  2018年   501篇
  2017年   444篇
  2016年   705篇
  2015年   1172篇
  2014年   1239篇
  2013年   1290篇
  2012年   1767篇
  2011年   1778篇
  2010年   1098篇
  2009年   951篇
  2008年   1229篇
  2007年   1228篇
  2006年   1070篇
  2005年   971篇
  2004年   911篇
  2003年   723篇
  2002年   647篇
  2001年   126篇
  2000年   78篇
  1999年   108篇
  1998年   115篇
  1997年   79篇
  1996年   70篇
  1995年   52篇
  1994年   46篇
  1993年   48篇
  1992年   34篇
  1991年   25篇
  1990年   20篇
  1989年   28篇
  1988年   18篇
  1987年   16篇
  1986年   14篇
  1985年   24篇
  1984年   21篇
  1983年   25篇
  1982年   22篇
  1981年   18篇
  1980年   13篇
  1979年   12篇
  1978年   13篇
  1976年   11篇
  1963年   10篇
  1960年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The S. cerevisiae SCF(Cdc4) is a prototype of RING-type SCF E3s, which recruit substrates for polyubiquitination by the Cdc34 ubiquitin-conjugating enzyme. Current models propose that Cdc34 ubiquitinates the substrate while remaining bound to the RING domain. In contrast, we found that the formation of a ubiquitin thiol ester regulates the Cdc34/SCF(Cdc4) binding equilibrium by increasing the dissociation rate constant, with only a minor effect on the association rate. By using a F72VCdc34 mutant with increased affinity for the RING domain, we demonstrate that release of ubiquitin-charged Cdc34-S - Ub from the RING is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Release of ubiquitin-charged E2 from E3 prior to ubiquitin transfer is a previously unrecognized step in ubiquitination, which can explain both the modification of multiple lysines on the recruited substrate and the extension of polyubiquitin chains. We discuss implications of this finding for function of other ubiquitin ligases.  相似文献   
972.
973.
The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota.  相似文献   
974.
Phototropins (phot1 and phot2) are plasma membrane–associated receptor kinases that respond specifically to blue and UV wavelengths. In addition to a C-terminal Ser/Thr kinase domain, phototropins contain two N-terminal chromophore binding LOV domains that function as photoswitches to regulate a wide range of enzymatic activities in prokaryotes and eukaryotes. Through domain swapping, we show that the photochemical properties of Arabidopsis thaliana phot1 rely on interactions between LOV1 and LOV2, which are facilitated by their intervening linker sequence. Functional analysis of domain-swap proteins supports a mechanism whereby LOV2 acts as a dark-state repressor of phot1 activity both in vitro and in vivo. Moreover, we find a photoactive role for LOV1 in arresting chloroplast accumulation at high light intensities. Unlike LOV2, LOV1 cannot operate as a dark-state repressor, resulting in constitutive receptor autophosphorylation and accelerated internalization from the plasma membrane. Coexpression of active and inactive forms of phot1 demonstrates that autophosphorylation can occur intermolecularly, independent of LOV1, via light-dependent receptor dimerization in vivo. Indeed, transphosphorylation is sufficient to promote phot1 internalization through a clathrin-dependent endocytic pathway triggered primarily by phosphorylation of Ser-851 within the kinase activation loop. The mechanistic implications of these findings in regard to light-driven receptor activation and trafficking are discussed.  相似文献   
975.
Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-terminal membrane-binding amphipathic helix attached to the main ATPase domain. In infected cells, 2C is involved in the formation of membrane vesicles, where it co-localizes with viral RNA replication complexes, but its precise role in virus replication has not been elucidated. We show here that deletion of the predicted N-terminal amphipathic helix enables overexpression in Escherichia coli of a highly soluble truncated protein, 2C(34–318), that has ATPase and RNA binding activity. ATPase activity was abrogated by point mutations in the Walker A (K116A) and B (D160A) motifs and Motif C (N207A) in the active site. Unliganded 2C(34–318) exhibits concentration-dependent self-association to yield oligomeric forms, the largest of which is tetrameric. Strikingly, in the presence of ATP and RNA, FMDV 2C(34–318) containing the N207A mutation, which binds but does not hydrolyze ATP, was found to oligomerize specifically into hexamers. Visualization of FMDV 2C-ATP-RNA complexes by negative stain electron microscopy revealed hexameric ring structures with 6-fold symmetry that are characteristic of AAA+ ATPases. ATPase assays performed by mixing purified active and inactive 2C(34–318) subunits revealed a coordinated mechanism of ATP hydrolysis. Our results provide new insights into the structure and mechanism of picornavirus 2C proteins that will facilitate new investigations of their roles in infection.  相似文献   
976.
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.  相似文献   
977.
Wooller MJ  Johnson BJ  Wilkie A  Fogel ML 《Oecologia》2005,145(1):100-112
The stable isotopic composition (δ13C) of sediments from lakes are frequently analyzed to reconstruct the proportion of the regional vegetation that used either the C3 or C4 photosynthetic pathways, often without conducting a detailed survey of the current local vegetation. We performed a study on the modern vegetation composition within the Wolfe Creek Meteorite Crater to complement our future paleoecological investigation of the crater. A bull’s-eye pattern exists where C4 grasses dominate an outer ring and salt tolerant species, including shrubs, herbs, chenopods, and halophytic algae, dominate the inner pan of the crater. The ecotone between the inner and outer zones is narrow and occupied by tall (>7 m) Acacia ampliceps, with some C4 grasses in the understory. Along with the highest water table and most saline soils the center of the crater has C3 plants present with the highest δ13C and δ15N values. The range of δ13C and δ15N values from the analysis of surface soil organic matter (OM) was much smaller compared with the range of values from plant materials implying that either: (1) the current plant OM has not yet been integrated into the soils, or (2) processes within the soil have acted to homogenize isotopic variability within the crater. The application of a two end member mixing model to calculate %C4 and %C3 biomass from the δ13C of surface soil OM was complicated by: (1) the crater containing both a dry habitat with C4 grasses and a central pan with C4 halophytic plants and, (2) the large variation in the δ13C of the plants and soil OM.  相似文献   
978.
Reduced carbohydrate (CHO) availability after exercise has a potent influence on the regulation of substrate metabolism, but little is known about the impact of fat availability and/or energy deficit on fuel metabolism when dietary CHO availability is not reduced. The purpose of this study was to determine the influence of a postexercise energy deficit, independent of CHO availability, on plasma substrate concentrations and substrate oxidation. Seven moderately trained men (peak oxygen uptake: 56 +/- 2 ml.kg(-1).min(-1)) performed exhaustive cycling exercise on two separate occasions. The two trials differed only by the meals ingested after exercise: 1) a high-fat diet designed to maintain energy balance or 2) a low-fat diet designed to elicit energy deficit. The CHO and protein contents of the diets were identical. The next morning, we measured plasma substrate and insulin concentrations and CHO oxidation, and we obtained muscle biopsies from the vastus lateralis for measurement of pyruvate dehydrogenase kinase (PDK)-2 and PDK-4 mRNA expression by using RT-PCR. Despite identical blood glucose (5.0 +/- 0.1 and 4.9 +/- 0.1 mM) and insulin (7.9 +/- 1.1 and 8.4 +/- 0.9 microU/ml) concentrations, plasma fatty acid and glycerol concentrations were elevated three- to fourfold during energy deficit compared with energy balance and CHO oxidation was 40% lower (P < 0.01) the morning after energy deficit compared with energy balance (328 +/- 69 and 565 +/- 89 micromol/min). The lower CHO oxidation was accompanied by a 7.3 +/- 2.5-fold increase in PDK-4 mRNA expression after energy deficit (P < 0.05), whereas PDK-2 mRNA was similar between the trials. In conclusion, energy deficit increases fatty acid availability, increases PDK-4 mRNA expression, and suppresses CHO oxidation even when dietary CHO content is not reduced.  相似文献   
979.
We describe a streamlined and systematic method for cloning green fluorescent protein (GFP)-open reading frame (ORF) fusions and assessing their subcellular localization in Arabidopsis thaliana cells. The sequencing of the Arabidopsis genome has made it feasible to undertake genome-based approaches to determine the function of each protein and define its subcellular localization. This is an essential step towards full functional analysis. The approach described here allows the economical handling of hundreds of expressed plant proteins in a timely fashion. We have integrated recombinational cloning of full-length trimmed ORF clones (available from the SSP consortium) with high-efficiency transient transformation of Arabidopsis cell cultures by a hypervirulent strain of Agrobacterium. To demonstrate its utility, we have used a selection of trimmed ORFs, representing a variety of key cellular processes and have defined the localization patterns of 155 fusion proteins. These patterns have been classified into five main categories, including cytoplasmic, nuclear, nucleolar, organellar and endomembrane compartments. Several genes annotated in GenBank as unknown have been ascribed a protein localization pattern. We also demonstrate the application of flow cytometry to estimate the transformation efficiency and cell cycle phase of the GFP-positive cells. This approach can be extended to functional studies, including the precise cellular localization and the prediction of the role of unknown proteins, the confirmation of bioinformatic predictions and proteomic experiments, such as the determination of protein interactions in vivo, and therefore has numerous applications in the post-genomic analysis of protein function.  相似文献   
980.
The MRN complex in double-strand break repair and telomere maintenance   总被引:1,自引:0,他引:1  
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号