首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18980篇
  免费   1773篇
  国内免费   8篇
  2024年   27篇
  2023年   118篇
  2022年   268篇
  2021年   623篇
  2020年   341篇
  2019年   443篇
  2018年   502篇
  2017年   444篇
  2016年   706篇
  2015年   1173篇
  2014年   1239篇
  2013年   1292篇
  2012年   1768篇
  2011年   1780篇
  2010年   1099篇
  2009年   952篇
  2008年   1230篇
  2007年   1228篇
  2006年   1070篇
  2005年   971篇
  2004年   913篇
  2003年   723篇
  2002年   648篇
  2001年   128篇
  2000年   80篇
  1999年   108篇
  1998年   115篇
  1997年   79篇
  1996年   70篇
  1995年   52篇
  1994年   45篇
  1993年   49篇
  1992年   36篇
  1991年   26篇
  1990年   20篇
  1989年   28篇
  1988年   19篇
  1987年   18篇
  1986年   14篇
  1985年   25篇
  1984年   23篇
  1983年   25篇
  1982年   22篇
  1981年   20篇
  1980年   13篇
  1979年   12篇
  1978年   13篇
  1977年   11篇
  1976年   11篇
  1960年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
Patch size is known to affect biodiversity in fragmented landscapes, but is usually examined in systems where the surrounding matrix habitat is unfavourable. We examined beetle diversity in a floodplain ecosystem that is characterised by naturally occurring grassland patches within a dominant matrix of contrasting yet habitable forest. We asked whether differences in the beetle assemblage between grassland and forest vegetation depended on the area of the grassland patch, which is a function of its flooding frequency and duration: smaller grasslands tend to be higher on the floodplain and are flooded less often and for shorter periods than larger grasslands. We found a negative relationship between grassland area and beetle abundance and species richness, and a positive relationship between grassland area and compositional dissimilarity from the surrounding forest. As expected, we found an overall difference in composition between forest and grassland assemblages, with five beetle species more common in the grasslands. Our study indicates that floodplain grasslands not only support beetle assemblages that are distinct from the surrounding forest, but that assemblages from the larger grasslands are compositionally more distinct than those from smaller grasslands. A likely cause of this pattern is the reduced edge effects and greater environmental contrast between forest and large grasslands that may be exposed to greater variation in local climate. Ongoing changes to flood regimes and potential encroachment of forest plants may decrease grassland area in the future, which may reduce spatial heterogeneity in the insect community in this unique floodplain ecosystem.  相似文献   
262.

Aim

Across the tropics, large‐bodied mammal species are threatened by rapid and widespread forest habitat conversion by either commercial logging or agricultural expansion. How such species use these habitats is an important area of research for guiding their future management. The tropical forest‐dwelling sun bear, Helarctos malayanus, is the least known of the eight bear species. Consequently, the IUCN/SSC Bear Specialist Group ranks research on this species as a top priority. This study aims to investigate landscape variables that influence sun bear habitat use in forests under varying levels of degradation and protection.

Location

A 20,998 km2 Sumatra forest landscape covering Kerinci Seblat National Park (KSNP), Batang Hari Protection Forest (BHPF) and neighbouring logging and agricultural concessions.

Methods

An occupancy‐based sampling technique using detection/non‐detection data with 10 landscape covariates was applied in six study areas that operated a total of 125 camera traps. The potential differences between habitat use (ψ) of sun bears were first modelled with broad‐scale covariates of study area, land‐use types and forest type. Sun bear habitat use was then investigated with the finer‐scale landscape features associated within these areas.

Results

From 10,935 trap nights, sun bears were recorded at altitudes ranging from 365 to 1791 m. At a broad‐scale, habitat use increased with protection status, being highest in KSNP (0.688 ± 0.092, ± SE) and BHPF (0.621 ± 0.110) compared to production (0.418 ± 0.121) and convertible (0.286 ± 0.122) forests. Within these areas, sun bears showed a preference for forest that was further from public roads and villages and at a lower elevation.

Main conclusions

The habitat suitability model identified several high‐quality habitat patches outside of the priority conservation areas for immediate protection. Consequently, conservation management strategies should emphasize the importance of high conservation value forests and prohibit further conversion of threatened lowland forests.
  相似文献   
263.
Community structure at local scales is a major factor controlling population and community dynamics of plant species. Dicerandra immaculata Lakela var. immaculata (Lamiaceae) is a critically endangered plant known only from a few locations in scrub habitat in Florida. Using seven sites where populations of D. immaculata were wild, introduced, and/or extirpated, we sought to answer the following questions: (1) how do habitat characteristics at locations supporting wild D. immaculata plants vary from random locations within the same habitat; (2) how do habitat characteristics differ between wild and extirpated populations; and (3) how do habitat characteristics differ between wild and introduced populations? At locations of wild D. immaculata, community structure had fewer woody stems, shorter understory vegetation, lower percent canopy coverage, and lower percent ground cover of detritus than random locations and locations with extirpated D. immaculata. In addition, bare ground decreased at extirpated locations because other plant species expanded their coverage, water saturation of the soil increased, diversity of shrubs decreased, and composition of the overstory changed compared to that of wild locations. Habitat characteristics associated with introduced plants were more similar to characteristics at randomly chosen locations than those with wild plants. However, introduced plants tended to occupy locations that had drier soil, a higher abundance of conspecifics, and a higher proportion of woody understory plants than that of random locations. Overall, gaps in the canopy and at ground level are likely essential for survival and recruitment of D. immaculata.  相似文献   
264.
How dietary fatty acids are absorbed into the enterocyte and transported to the ER is not established. We tested the possibility that caveolin-1 containing lipid rafts and endocytic vesicles were involved. Apical brush border membranes took up 15% of albumin bound 3H-oleate whereas brush border membranes from caveolin-1 KO mice took up only 1%. In brush border membranes, the 3H-oleate was in the detergent resistant fraction of an OptiPrep gradient. On OptiPrep gradients of intestinal cytosol, we also found the 3H-oleate in the detergent resistant fraction, separate from OptiPrep gradients spiked with 3H-oleate or 3H-triacylglycerol. Caveolin-1 immuno-depletion of cytosol removed 91% of absorbed 3H-oleate whereas immuno-depletion using IgG, or anti-caveolin-2 or -3 or anti-clathrin antibodies removed 20%. Electron microscopy showed the presence of caveolin-1 containing vesicles in WT mouse cytosol that were 4 fold increased by feeding intestinal sacs 1 mM oleate. No vesicles were seen in caveolin-1 KO mouse cytosol. Caveolin-1 KO mice gained less weight on a 23% fat diet and had increased fat in their stool compared to WT mice. We conclude that dietary fatty acids are absorbed by caveolae in enterocyte brush border membranes, are endocytosed, and transported in cytosol in caveolin-1 containing endocytic vesicles.  相似文献   
265.
Objectives: Reactive oxygen species (ROS), including superoxide (O2??), play an important role in the biological effects of ionizing radiation. The human body has developed different antioxidant systems to defend against excessive levels of ROS. The aim of the present study is to investigate the redox status changes in the blood of radiologic technologists and compare these changes to control individuals.

Methods: We enrolled 60 medical workers: 20 occupationally exposed to ionizing radiation (all radiologic technologists), divided in three subgroups: conventional radiography (CR), computerized tomography (CT), and interventional radiography (IR) and 40 age- and gender-matched unexposed controls. Levels of O2?? and malondialdehyde (MDA) in blood were measured as an index of redox status, as were the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase. Redox status was also assessed by measuring levels of reduced and oxidized glutathione (GSH, GSSG, respectively).

Results: Levels of O2?? and MDA, and SOD activity in the blood of IR and CT-exposed subjects were significantly higher than both the CR-exposed subjects and control individuals. However, there were no statistically significant differences in the levels of catalase, GSH and ratio of GSH/GSSG between exposed workers and control individuals.

Discussion: This study suggests that healthcare workers in CT and IR occupationally exposed to radiation have an elevated circulating redox status as compared to unexposed individuals.  相似文献   
266.
The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land‐atmosphere carbon exchange. Previous forest recovery assessments using satellite optical‐infrared normalized difference vegetation index (NDVI) and tower CO2 eddy covariance techniques indicate rapid vegetation recovery within 5–10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post‐fire vegetation response to inform regional recovery assessments. We analyzed a multi‐year (2003–2010) satellite VOD record from the NASA AMSR‐E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post‐fire canopy biomass recovery within 3–7 years, lagging NDVI recovery by 1–5 years. The VOD lag was attributed to slower non‐photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre‐burn conditions was also directly proportional (P < 0.01) to satellite (moderate resolution imaging spectroradiometer) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical‐infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery.  相似文献   
267.
Abstract

Background: Despite the in vitro and in vivo evidence, studies are limited in evaluating whether chemokines are potential inflammatory mediators in response to air pollution exposure in humans.

Methods: We conducted a panel study coinciding with the Beijing Olympics, when temporary air pollution controls were implemented. We measured a suite of serum chemokines among healthy adults before, during and after the Olympics, respectively. Linear mixed-effect models were used to evaluate changes in chemokine levels over the three time periods.

Results: In response to the 50% drop in air pollution levels during the games, levels of RANTES, MCP-2, and TARC decreased by 25.8%, 20.9% and 35.3%, respectively (p?<?0.001) from pre-Olympics, and then increased by 45.8%, 34.9% and 61.5%, respectively (p?<?0.001) after the games when air pollution levels went up again. Similar patterns were observed in subgroup analyses by sex, age, smoking and body mass index. GRO-α and IL-8 decreased significantly during the games (22.5% and 30.4%), and increased non-significantly after the games. Eotaxin-1 only increased significantly from during- to post-games.

Conclusions: The strongest associations with air pollution levels were observed among RANTES, TARC and MCP-2. Those chemokines may play important roles in the air pollution-induced inflammatory pathway.  相似文献   
268.
269.
Data on species distribution and abundance are the foundation of population ecology. However, due to difficulties in surveying bats, abundance estimates for tree-roosting microchiropterans are non-existent. Therefore, our objective was to develop methods for estimating colony abundance and density, taking as our model Rafinesque’s big-eared bat Corynorhinus rafinesquii, a species of conservation concern found in cypress-gum swamps of the southeastern United States. We searched 123 transects at eight study sites in the Coastal Plain of Georgia, USA to locate and characterize diurnal summer roosts of C. rafinesquii. We modeled the relationship between the number of bat colonies and landscape-scale habitat variables with zero-inflated negative binomial regression and used Akaike’s information criterion to select the most parsimonious models. We generated a predictive density map to identify areas of high colony density and to estimate overall abundance. Colony density was predicted by the duration of wetland flooding, wetland width, and study site. Application of the regression model to a GIS indicated there were 3,734 colonies containing 6,910 adult bats on the eight study sites. Predicted density ranged from 0.07 colonies/ha and 0.07 adult bats/ha in saturated wetlands to 0.47 colonies/ha and 1.18 adult bats/ha in semi-permanently flooded wetlands. This study is the first to estimate density and abundance of forest-dwelling microchiropterans over a large area. Such data can serve as a baseline for future work on population trends in C. rafinesquii. In addition, our approach could be replicated for other bat species with moderately cryptic roosts.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号