首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1943篇
  免费   135篇
  2078篇
  2024年   2篇
  2023年   20篇
  2022年   47篇
  2021年   99篇
  2020年   49篇
  2019年   65篇
  2018年   74篇
  2017年   55篇
  2016年   83篇
  2015年   133篇
  2014年   144篇
  2013年   167篇
  2012年   198篇
  2011年   172篇
  2010年   101篇
  2009年   88篇
  2008年   109篇
  2007年   86篇
  2006年   72篇
  2005年   61篇
  2004年   60篇
  2003年   45篇
  2002年   31篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1985年   15篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1972年   3篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有2078条查询结果,搜索用时 0 毫秒
991.
Hoi H  Griggio M 《PloS one》2012,7(2):e32806
An individual's investment in mating or keeping a pair bond intact may be influenced not only by the attractiveness of its current mate, but also by that of other potential mates. In this study, we investigated the effect of relative attractiveness on pair-bond behaviour in bearded reedlings, Panurus biarmicus. We showed that mate attractiveness, in terms of beard length in males and tail length in females, influenced courtship behaviour when the pair was kept isolated. In the presence of a conspecific, contact initiations within a pair increased. This increment was mainly related to the sex of the unpaired conspecific, however, and less to differences in attractiveness between the current partner and the unpaired conspecific. Female contact initiations towards potential extra mates were independent of male attractiveness, whereas male contact behaviour was significantly influenced by female attractiveness. However, females displayed more contact initiations to their current mate when they were less attractive than the unpaired females. Males decreased their overtures towards other females with increasing attractiveness of their current mates. Overall, our results suggested that, when there was a risk of losing their mate, bearded reedlings adjust their pair-bond investment mainly in response to the presence or absence of a competitor, and fine-tune investment to a lesser extent in response to the attractiveness of that potential competitor.  相似文献   
992.
993.

Background

The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover.

Methodology/Principal Findings

We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures'' representative pdf''s via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season.

Conclusions/Significance

Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data.  相似文献   
994.

Background

Tumor cells with stem-like phenotype and properties, known as cancer stem cells (CSC), have been identified in most solid tumors and are presumed to be responsible for driving tumor initiation, chemoresistance, relapse, or metastasis. A subpopulation of cells with increased stem-like potential has also been identified within sarcomas. These cells are endowed with increased tumorigenic potential, chemoresistance, expression of embryonic markers, and side population(SP) phenotype. Leiomyosarcomas (LMS) are soft tissue sarcomas presumably arising from undifferentiated cells of mesenchymal origin, the Mesenchymal Stem Cells (MSC). Frequent recurrence of LMS and chemoresistance of relapsed patients may likely result from the failure to target CSC. Therefore, therapeutic cues coming from the cancer stem cell (CSC) field may drastically improve patient outcome.

Methodology/Principal Findings

We expanded LMS stem-like cells from patient samples in vitro and examined the possibility to counteract LMS malignancy through a stem-like cell effective approach. LMS stem-like cells were in vitro expanded both as “tumor spheres” and as “monolayers” in Mesenchymal Stem Cell (MSC) conditions. LMS stem-like cells displayed MSC phenotype, higher SP fraction, and increased drug-extrusion, extended proliferation potential, self-renewal, and multiple differentiation ability. They were chemoresistant, highly tumorigenic, and faithfully reproduced the patient tumor in mice. Such cells displayed activation of EGFR/AKT/MAPK pathways, suggesting a possibility in overcoming their chemoresistance through EGFR blockade. IRESSA plus Vincristine treatment determined pathway inactivation, impairment of SP phenotype, high cytotoxicity in vitro and strong antitumor activity in stem-like cell-generated patient-like xenografts, targeting both stem-like and differentiated cells.

Conclusions/Significance

EGFR blockade combined with vincristine determines stem-like cell effective antitumor activity in vitro and in vivo against LMS, thus providing a potential therapy for LMS patients.  相似文献   
995.

Background

Marcus Gunn jaw-winking synkinesis (MGJWS) is characterized by eyelid ptosis, which disappears during jaw movement. Familial MGJWS is an extremely rare condition. Some authors suggested that MGJWS is due to neural misdirection in the brainstem whereas others suggested that aberrant reinnervation or ephapse may be responsible for synkinetic activity. Pathogenesis of this condition is therefore still unclear.

Methodology/Principal Findings

To investigate pathogenetic mechanism in familial MGJWS we performed neurophysiological (EMG, Blink Reflex, Recovery cycle of the R2 component of the blink reflex, Masseter inhibitory reflex, BAEPS and kinematic analysis) and neuroradiological (MRI, Diffusion Tensor Imaging) investigations in a member of a multigenerational family with autosomal dominant Marcus Gunn jaw-winking synkinesis (MGJWS). Kinematic analysis of eyelid and jaw movements disclosed a similar onset and offset of the eyelid and jaw in both the opening and closing phases. The excitability of brainstem circuits, as assessed by the blink reflex recovery cycle and recovery index, was normal. Diffusion Tensor Imaging revealed reduced fractional anisotropy within the midbrain tegmentum.

Conclusions/Significance

Kinematic and MRI findings point to a brainstem structural abnormality in our familial MGJWS patient thus supporting the hypothesis of a neural misdirection of trigeminal motor axons to the elevator palpebralis muscle.  相似文献   
996.
The recently emerged plant pathogen Phytophthora ramorum is responsible for causing the sudden oak death epidemic. This review documents the emergence of P. ramorum based on evolutionary and population genetic analyses. Currently infection by P. ramorum occurs only in Europe and North America and three clonal lineages are distinguished: EU1, NA1 and NA2. Ancient divergence of these lineages supports a scenario in which P. ramorum originated from reproductively isolated populations and underwent at least four global migration events. This recent work sheds new light on mechanisms of emergence of exotic pathogens and provides crucial insights into migration pathways.  相似文献   
997.
The antifungal peptide mytimycin (MytM) is synthesized by hemocytes of the Mediterranean mussel, Mytilus galloprovincialis. In addition to sequence and gene structure diversities previously reported from pooled hemocytes, the present report focused on the expression of mytm gene in individual M.?galloprovincialis, before and after challenge. Within untreated mussel, MytM mRNA was observed by ISH in about 42% of circulating hemocytes, characterized by large, diffuse nucleus. Injection with Fusarium oxysporum increased such percentage, but in only some of the mussels. Similarly, MytM gene expression increased after injection in only some of the mussels, as measured by qPCR. Responders and not responders are common evidence in any given population of organisms. Nevertheless, even if the use of proper pool size selection has been practised to find out and evaluate the most common response trends, individual analyses must be regarded as optimal.  相似文献   
998.
Carbon assimilation in plants is regulated by the reduction of specific protein disulfides by light and their re-oxidation in the dark. The redox switch CP12 is an intrinsically disordered protein that can form two disulfide bridges. In the dark oxidized CP12 forms an inactive supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase, two enzymes of the carbon assimilation cycle. Here we show that binding of CP12 to GAPDH, the first step of ternary complex formation, follows an integrated mechanism that combines conformational selection with induced folding steps. Initially, a CP12 conformation characterized by a circular structural motif including the C-terminal disulfide is selected by GAPDH. Subsequently, the induced folding of the flexible C-terminal tail of CP12 in the active site of GAPDH stabilizes the binary complex. Formation of several hydrogen bonds compensates the entropic cost of CP12 fixation and terminates the interaction mechanism that contributes to carbon assimilation control.  相似文献   
999.
NMR can be used in food analysis for origin discrimination and biomarker discovery using a metabolomic approach. Here, we present an example of this strategy to discriminate honey samples of different botanical origins. The NMR spectra of 353 chloroform extracts of selected honey samples were analyzed to detect possible markers of their floral origin. Six monofloral Italian honey types (acacia, linden, orange, eucalyptus, chestnut, and honeydew) were analyzed together with polyfloral samples. Specific markers were identified for each monofloral origin: two markers for acacia (chrysin and pinocembrin), one for chestnut (??-LACT-3-PKA), two for orange (8-hydroxylinalool and caffeine), one for eucalyptus (dehydrovomifoliol), one for honeydew (a diacylglycerilether) and two for linden (4-(1-hydroxy-1-methylethyl)cyclohexa-1,3-diene-carboxylic acid and 4-(1-methylethenyl)cyclohexa-1,3-diene-carboxylic acid). An NMR-based metabolomic approach that used O2PLS-DA multivariate data analysis allowed us to discriminate the different types of honey. Two different classifiers were built based on different multivariate techniques. The high precision of the classification obtained suggests that this approach could be useful to develop generally applicable metabolomic tools to discriminate the origin of honey samples.  相似文献   
1000.
There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号