首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1897篇
  免费   134篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   99篇
  2020年   49篇
  2019年   65篇
  2018年   74篇
  2017年   55篇
  2016年   81篇
  2015年   133篇
  2014年   142篇
  2013年   165篇
  2012年   197篇
  2011年   170篇
  2010年   101篇
  2009年   85篇
  2008年   108篇
  2007年   85篇
  2006年   72篇
  2005年   60篇
  2004年   60篇
  2003年   44篇
  2002年   29篇
  2001年   10篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有2031条查询结果,搜索用时 171 毫秒
931.
The interplay between impaired protein biosynthesis and/or function caused by missense mutations, particularly in relation to specific protein regions, has been poorly investigated. As model we chose the severe p.Y450C mutation in the carboxyl-terminal region of coagulation factor IX (FIX) and, by expression of a panel of recombinant variants, demonstrated the key role of the tyrosine phenyl group for both FIX secretion and coagulant activity. Comparison among highly homologous coagulation serine proteases indicate that additive or compensatory pleiotropic effects on secretion and function by carboxyl-terminal mutations produce life-threatening or mild phenotypes in the presence of similarly reduced protein amounts.  相似文献   
932.
The Salton Sea, a hypersaline lake located in Southern California, is a major habitat for migratory waterfowl, including endangered species, recently threatened by selenium toxicity. Selenium is both an essential micronutrient and a contaminant and its speciation and cycling are driven by microbial activity. In the absence of oxygen, microorganisms can couple the oxidation of organic matter with the reduction of soluble selenate and selenite to elemental selenium. In order to better understand and quantify selenium cycling and selenium transfer between water and underlying sediments in the Salton Sea, we measured the maximum potential selenate reduction rates (R max) and selenate adsorption isotherms in sediments collected from seven littoral locations in July 2011. We also measured salinity, organic carbon, nitrogen, and elemental selenium content and the abundance of selenate-reducing prokaryotes at each site. Our results showed a high potential for selenate reduction and limited selenate adsorption in all studied sites. Maximum potential selenate reduction rates were affected by sediment Corg content. We showed that selenate reduction potential of Salton Sea sediments far outweighs current dissolved inputs to the lake. Selenate reduction is thus a likely driver for selenium removal from the lake’s water and selenate retention in littoral sediments of the Salton Sea.  相似文献   
933.
Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.  相似文献   
934.
935.
936.
Parasympathetic regulation of sinoatrial node (SAN) pacemaker activity modulates multiple ion channels to temper heart rate. The functional role of the G-protein–activated K+ current (IKACh) in the control of SAN pacemaking and heart rate is not completely understood. We have investigated the functional consequences of loss of IKACh in cholinergic regulation of pacemaker activity of SAN cells and in heart rate control under physiological situations mimicking the fight or flight response. We used knockout mice with loss of function of the Girk4 (Kir3.4) gene (Girk4−/− mice), which codes for an integral subunit of the cardiac IKACh channel. SAN pacemaker cells from Girk4−/− mice completely lacked IKACh. Loss of IKACh strongly reduced cholinergic regulation of pacemaker activity of SAN cells and isolated intact hearts. Telemetric recordings of electrocardiograms of freely moving mice showed that heart rate measured over a 24-h recording period was moderately increased (10%) in Girk4−/− animals. Although the relative extent of heart rate regulation of Girk4−/− mice was similar to that of wild-type animals, recovery of resting heart rate after stress, physical exercise, or pharmacological β-adrenergic stimulation of SAN pacemaking was significantly delayed in Girk4−/− animals. We conclude that IKACh plays a critical role in the kinetics of heart rate recovery to resting levels after sympathetic stimulation or after direct β-adrenergic stimulation of pacemaker activity. Our study thus uncovers a novel role for IKACh in SAN physiology and heart rate regulation.  相似文献   
937.
The capacity of HDL to induce cell cholesterol efflux is considered one of its main antiatherogenic properties. Little is known about the impact of such HDL function on vascular physiology. We investigated the relationship between ABCA1-dependent serum cholesterol efflux capacity (CEC), an HDL functionality indicator, and pulse wave velocity (PWV), an indicator of arterial stiffness. Serum of 167 healthy subjects was used to conduct CEC measurement, and carotid-femoral PWV was measured with a high-fidelity tonometer. J774 macrophages, labeled with [3H]cholesterol and stimulated to express ABCA1, were exposed to sera; the difference between cholesterol efflux from stimulated and unstimulated cells provided specific ABCA1-mediated CEC. PWV is inversely correlated with ABCA1-dependent CEC (r = −0.183; P = 0.018). Moreover, controlling for age, sex, body mass index, mean arterial pressure, serum LDL, HDL-cholesterol, and fasting plasma glucose, PWV displays a significant negative regression on ABCA1-dependent CEC (β = −0.204; 95% confidence interval, −0.371 to −0.037). The finding that ABCA1-dependent CEC, but not serum HDL cholesterol level (r = −0.002; P = 0.985), is a significant predictor of PWV in healthy subjects points to the relevance of HDL function in vascular physiology and arterial stiffness prevention.  相似文献   
938.
939.
Measles virus (MV) infection causes an acute childhood disease that can include infection of the central nervous system and can rarely progress to severe neurological disease for which there is no specific treatment. We generated potent antiviral peptide inhibitors of MV entry and spreading and MV-induced cell fusion. Dimers of MV-specific peptides derived from the C-terminal heptad repeat region of the MV fusion protein, conjugated to cholesterol, efficiently protect SLAM transgenic mice from fatal MV infection. Fusion inhibitors hold promise for the prophylaxis of MV infection in unvaccinated and immunocompromised people, as well as potential for the treatment of grave neurological complications of measles.  相似文献   
940.
Epithelial-to-mesenchymal transition (EMT) is an embryonic program used by cancer cells to acquire invasive capabilities becoming metastatic. ΔRon, a constitutively active isoform of the Ron tyrosine kinase receptor, arises from skipping of Ron exon 11 and provided the first example of an alternative splicing variant causatively linked to the activation of tumor EMT. Splicing of exon 11 is controlled by two adjacent regulatory elements, a silencer and an enhancer of splicing located in exon 12. The alternative splicing factor and oncoprotein SRSF1 directly binds to the enhancer, induces the production of ΔRon and activates EMT leading to cell locomotion. Interestingly, we now find an important role for hnRNP A1 in controlling the activity of the Ron silencer. HnRNP A1 is able to antagonize the binding of SRSF1 and prevent exon skipping. Notably, hnRNP A1, by inhibiting the production of ΔRon, activates the reversal program, namely the mesenchymal-to-epithelial transition, which instead occurs at the final metastasis sites. Also, hnRNP A1 affects Ron splicing by regulating the expression level of hnRNP A2/B1, which similarly to SRSF1 can promote ΔRon production. These results shed light on how splicing regulation contributes to the tumor progression and provide potential targets to develop anticancer therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号