首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1897篇
  免费   134篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   99篇
  2020年   49篇
  2019年   65篇
  2018年   74篇
  2017年   55篇
  2016年   81篇
  2015年   133篇
  2014年   142篇
  2013年   165篇
  2012年   197篇
  2011年   170篇
  2010年   101篇
  2009年   85篇
  2008年   108篇
  2007年   85篇
  2006年   72篇
  2005年   60篇
  2004年   60篇
  2003年   44篇
  2002年   29篇
  2001年   10篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有2031条查询结果,搜索用时 484 毫秒
911.
A novel class of benzimidazole NPY Y5 receptor antagonists was prepared exploiting a privileged spirocarbamate moiety. The structure-activity relationship of this series and efforts to achieve a profile suitable for further development and an appropriate pharmacokinetic profile in rat are described. Optimisation led to the identification of the brain penetrant, orally bioavailable Y5 antagonist 9b which significantly inhibited the food intake induced by a Y5 selective agonist with a minimal effective dose of 30mg/kg po.  相似文献   
912.
β2 microglobulin (β2m) is the light chain of class‐I major histocompatibility complex (MHC‐I). Its accumulation in the blood of patients affected by kidney failure leads to amyloid deposition around skeletal joints and bones, a severe condition known as Dialysis Related Amyloidosis (DRA). In an effort to dissect the structural determinants of β2m aggregation, several β2m mutants have been previously studied. Among these, three single‐residue mutations in the loop connecting strands D and E (W60G, W60V, D59P) have been shown to affect β2m amyloidogenic properties, and are here considered. To investigate the biochemical and biophysical properties of wild‐type (w.t.) β2m and the three mutants, we explored thermal unfolding by Trp fluorescence and circular dichroism (CD). The W60G mutant reveals a pronounced increase in conformational stability. Protein oligomerization and reduction kinetics were investigated by electrospray‐ionization mass spectrometry (ESI‐MS). All the mutations analyzed here reduce the protein propensity to form soluble oligomers, suggesting a role for the DE‐loop in intermolecular interactions. A partially folded intermediate, which may be involved in protein aggregation induced by acids, accumulates for all the tested proteins at pH 2.5 under oxidizing conditions. Moreover, the kinetics of disulfide reduction reveals specific differences among the tested mutants. Thus, β2m DE‐loop mutations display long‐range effects, affecting stability and structural properties of the native protein and its low‐pH intermediate. The evidence presented here hints to a crucial role played by the DE‐loop in determining the overall properties of native and partially folded β2m.  相似文献   
913.
A novel series of 3-amino-1H-thieno[3,2-c]pyrazole derivatives demonstrating high potency in inhibiting Aurora kinases was developed. Here we describe the synthesis and a preliminary structure–activity relationship, which led to the discovery of a representative compound (38), which showed low nanomolar inhibitory activity in the anti-proliferation assay and was able to block the cell cycle in HCT-116 cell line. This compound demonstrated favorable pharmacokinetic properties and good efficacy in the HL-60 xenograft tumor model.  相似文献   
914.
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.  相似文献   
915.
Autumnal leaf senescence signals the end of photosynthetic activities in temperate deciduous trees and consequently exerts a strong control on various ecological processes. Predicting leaf senescence dates (LSD) with high accuracy is thus a prerequisite for better understanding the climate–ecosystem interactions. However, modeling LSD at large spatial and temporal scales is challenging. In this study, first, we used 19972 site‐year records (848 sites and four deciduous tree species) from the PAN European Phenology network to calibrate and evaluate six leaf senescence models during the period 1980–2013. Second, we extended the spatial analysis by repeating the procedure across Europe using satellite‐derived end of growing season and a forest map. Overall, we found that models that considered photoperiod and temperature interactions outperformed models using simple temperature or photoperiod thresholds for Betula pendula, Fagus sylvatica and Quercus robur. On the contrary, no model displayed reasonable predictions for Aesculus hippocastanum. This inter‐model comparison indicates that, contrary to expectation, photoperiod does not significantly modulate the accumulation of cooling degree days (CDD). On the other hand, considering the carryover effect of leaf unfolding date could promote the models’ predictability. The CDD models generally matched the observed LSD at species level and its interannual variation, but were limited in explaining the inter‐site variations, indicating that other environmental cues need to be considered in future model development. The discrepancies remaining between model simulations and observations highlight the need of manipulation studies to elucidate the mechanisms behind the leaf senescence process and to make current models more realistic.  相似文献   
916.
Implementing the Ecosystem Approach in marine ecosystems is moving from preliminary steps—dedicated to defining the optimal features for indicators and developing efficient indicator frameworks—towards an operational phase where multisector marine management decisions are executed using this information. Within this operational context, emergent ecosystem properties are becoming quite promising as they have been demonstrated to be globally widespread and repeatable, and to be quite effective in detecting significant state variations of complex systems. Biomass accumulation across TLs (CumB‐TL) combines two important emergent properties of an ecosystem (energy flow, in terms of transfer efficiency, and storage, expressed as biomass), both amenable to detecting rapid ecosystem change. However, for further application, it is crucial to understand which types of drivers an indicator is sensitive to and how robust it is in relation to modifications of the external conditions and/or the system state. Here we address some outstanding questions of these CumB‐TL curves related to their sensitivity to various drivers by carrying out a global scale assessment (using data from 62 LMEs) over six decades (1950–2010). We confirm the consistency of the S‐pattern across all the LMEs, independent from latitude, ecosystem, environmental conditions, and stress level. The dynamics of the curve shape showed a tendency to stretch (i.e. decrease of steepness), in the presence of external disturbance and conversely to increase in steepness and shift towards higher TL in the case of recovery from stressed conditions. Our results suggest the presence of three main types of ecosystem dynamics, those showing an almost continuous increase in ecological state over time, those showing a continuous decrease in ecological state over time, and finally those showing a mixed behaviour flipping between recovering and degrading phases. These robust patterns suggest that the CumB‐TL curve approach has some useful properties for use in further advancing the implementation of the Ecosystem Approach, allowing us to detect the state of a given marine ecosystem based on the dynamics of its curve shape, by using readily available time series data. The value of being able to identify conditions that might require management actions is quite high and, in many respects, represents the main objective in the context of an Ecosystem Approach, with large applications for detecting and responding to global changes in marine ecosystems.  相似文献   
917.
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disorder caused by mutations in the IGHMBP2 gene, which encodes immunoglobulin μ‐binding protein 2, leading to progressive spinal motor neuron degeneration. We review the data available in the literature about SMARD1. The vast majority of patients show an onset of typical symptoms in the first year of life. The main clinical features are distal muscular atrophy and diaphragmatic palsy, for which permanent supportive ventilation is required. No effective treatment is available yet, but novel therapeutic approaches, such as gene therapy, have shown encouraging results in preclinical settings and thus represent possible methods for treating SMARD1. Significant advancements in the understanding of both the SMARD1 clinical spectrum and its molecular mechanisms have allowed the rapid translation of preclinical therapeutic strategies to human patients to improve the poor prognosis of this devastating disease.  相似文献   
918.
919.
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号