首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1897篇
  免费   134篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   99篇
  2020年   49篇
  2019年   65篇
  2018年   74篇
  2017年   55篇
  2016年   81篇
  2015年   133篇
  2014年   142篇
  2013年   165篇
  2012年   197篇
  2011年   170篇
  2010年   101篇
  2009年   85篇
  2008年   108篇
  2007年   85篇
  2006年   72篇
  2005年   60篇
  2004年   60篇
  2003年   44篇
  2002年   29篇
  2001年   10篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有2031条查询结果,搜索用时 484 毫秒
191.
In prion diseases, the cellular prion protein (PrP(C)) is converted to an insoluble and protease-resistant abnormal isoform termed PrP(Sc). In different prion strains, PrP(Sc) shows distinct sites of endogenous or exogenous proteolysis generating a core fragment named PrP27-30. Sporadic Creutzfeldt-Jakob disease (sCJD), the most frequent human prion disease, clinically presents with a variety of neurological signs. As yet, the clinical variability observed in sCJD has not been fully explained by molecular studies relating two major types of PrP27-30 with unglycosylated peptides of 21 (type 1) and 19 kDa (type 2) and the amino acid methionine or valine at position 129. Recently, smaller C-terminal fragments migrating at 12 and 13 kDa have been detected in different sCJD phenotypes, but their significance remains unclear. By using two-dimensional immunoblot with anti-PrP antibodies, we identified two novel groups of protease-resistant PrP fragments in sCJD brain tissues. All sCJD cases with type 1 PrP27-30, in addition to MM subjects with type 2 PrP27-30, were characterized by the presence of unglycosylated PrP fragments of 16-17 kDa. Conversely, brain homogenates from patients VV and MV with type 2 PrP27-30 contained fully glycosylated PrP fragments, which after deglycosylation migrated at 17.5-18 kDa. Interestingly, PrP species of 17.5-18 kDa matched deglycosylated forms of the C1 PrP(C) fragment and were associated with tissue PrP deposition as plaque-like aggregates or amyloid plaques. These data show the presence of multiple PrP(Sc) conformations in sCJD and, in addition, shed new light on the correlation between sCJD phenotypes and disease-associated PrP molecules.  相似文献   
192.
Low-affinity A2B adenosine receptors (A2B ARs), which are expressed in astrocytes, are mainly activated during brain hypoxia and ischaemia, when large amounts of adenosine are released. Cytokines, which are also produced at high levels under these conditions, may regulate receptor responsiveness. In the present study, we detected A2B AR in human astrocytoma cells (ADF) by both immunoblotting and real-time PCR. Functional studies showed that the receptor stimulated adenylyl cyclase through Gs proteins. Moreover, A2B ARs were phosphorylated and desensitized following stimulation of the receptors with high agonist concentration. Tumour necrosis factor alpha (TNF-alpha) treatment (24- h) increased A2B AR functional response and receptor G protein coupling, without any changes in receptor protein and mRNA levels. TNF-alpha markedly reduced agonist-dependent receptor phosphorylation on threonine residues and attenuated agonist-mediated A2B ARs desensitization. In the presence of TNF-alpha, A2B AR stimulation in vitro induced the elongation of astrocytic processes, a typical morphological hallmark of in vivo reactive astrogliosis. This event was completely prevented by the selective A2B AR antagonist MRS 1706 and required the presence of TNF-alpha. These results suggest that, in ADF cells, TNF-alpha selectively modulates A2B AR coupling to G proteins and receptor functional response, providing new insights to clarify the pathophysiological role of A2B AR in response to brain damage.  相似文献   
193.
Aim of this study was to set up a method by capillary electrophoresis to detect lactulose and mannitol in urine after an oral load, and to estimate the intestinal permeability in controls and in type I diabetes patients. The underivatized carbohydrates were monitored by indirect UV detection using sorbate, cetyltrimethylammonium bromide and LiOH as background electrolyte. Urines were purified by solid phase extraction, shaken with cation exchange resin, filtered and analysed. Carbohydrates migrated in <10 min in relation to their pK(a) and M(r). Controls (n = 33) and patients (n = 23) had an excretion ratio lactulose/mannitol 0.025 (0.018-0.051) and 0.067 (0.050-0.127), respectively (p < 0.01, median, interquartile range).  相似文献   
194.
The central aim of this paper consists in arguing that biological organisms realize a specific kind of causal regime that we call "organisational closure"; i.e., a distinct level of causation, operating in addition to physical laws, generated by the action of material structures acting as constraints. We argue that organisational closure constitutes a fundamental property of biological systems since even its minimal instances are likely to possess at least some of the typical features of biological organisation as exhibited by more complex organisms. Yet, while being a necessary condition for biological organization, organisational closure underdetermines, as such, the whole set of requirements that a system has to satisfy in order to be taken as a paradigmatic example of organism. As we suggest, additional properties, as modular templates and control mechanisms via dynamical decoupling between constraints, are required to get the complexity typical of full-fledged biological organisms.  相似文献   
195.
Seventy-six 2-phenylbenzimidazole derivatives were synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses. The most commonly affected viruses were, in decreasing order, CVB-2, BVDV, Sb-1, HSV-1, and YFV, while HIV-1 and VSV were not affected, and RSV, VV and Reo-1 were only susceptible to a few compounds. Thirty-nine compounds exhibited high activity (EC50 = 0.1–10 μM) against at least one virus, and four of them were outstanding for their high and selective activity against VV (24, EC50 = 0.1 μM) and BVDV (50, 51, and 53 with EC50 = 1.5, 0.8, and 1.0 μM, respectively). The last compounds inhibited at low micromolar concentrations the NS5B RdRp of BVDV and also of HCV, the latter sharing structural similarity with the former. The considered compounds represent attractive leads for the development of antiviral agents against poxviruses, pestiviruses and even HCV, which are important human and veterinary pathogens.  相似文献   
196.
Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny.  相似文献   
197.
The fusion of enveloped viruses with the host cell is driven by specialized fusion proteins to initiate infection. The “class I” fusion proteins harbor two regions, typically two heptad repeat (HR) domains, which are central to the complex conformational changes leading to fusion: the first heptad repeat (HRN) is adjacent to the fusion peptide, while the second (HRC) immediately precedes the transmembrane domain. Peptides derived from the HR regions can inhibit fusion, and one HR peptide, T20 (enfuvirtide), is in clinical use for HIV-1. For paramyxoviruses, the activities of two membrane proteins, the receptor-binding protein (hemagglutinin-neuraminidase [HN] or G) and the fusion protein (F), initiate viral entry. The binding of HN or G to its receptor on a target cell triggers the activation of F, which then inserts into the target cell and mediates the membrane fusion that initiates infection. We have shown that for paramyxoviruses, the inhibitory efficacy of HR peptides is inversely proportional to the rate of F activation. For HIV-1, the antiviral potency of an HRC-derived peptide can be dramatically increased by targeting it to the membrane microdomains where fusion occurs, via the addition of a cholesterol group. We report here that for three paramyxoviruses—human parainfluenza virus type 3 (HPIV3), a major cause of lower respiratory tract diseases in infants, and the emerging zoonotic viruses Hendra virus (HeV) and Nipah virus (NiV), which cause lethal central nervous system diseases—the addition of cholesterol to a paramyxovirus HRC-derived peptide increased antiviral potency by 2 log units. Our data suggest that this enhanced activity is indeed the result of the targeting of the peptide to the plasma membrane, where fusion occurs. The cholesterol-tagged peptides on the cell surface create a protective antiviral shield, target the F protein directly at its site of action, and expand the potential utility of inhibitory peptides for paramyxoviruses.Fusion of enveloped viruses with the host cell is a key step in viral infectivity, and interference with this process can lead to highly effective antivirals. Viral fusion is driven by specialized proteins that undergo an ordered series of conformational changes. These changes facilitate the initial, close apposition of the viral and host membranes, and they ultimately result in the formation of a fusion pore (reviewed in reference 12). The “class I” fusion proteins harbor two regions, typically two heptad repeat (HR) domains: the first one (HRN) adjacent to the fusion peptide and the second one (HRC) immediately preceding the transmembrane domain. Peptides derived from the HR regions can inhibit fusion, and one of them, T20 (enfuvirtide), is in clinical use for HIV-1 (19). Peptides derived from the HRN and HRC regions of paramyxovirus fusion (F) proteins can interact with fusion intermediates of F (3, 20, 22, 37, 46, 49) and provide a promising antiviral strategy.The current model for class I-driven fusion postulates the existence of a so-called prehairpin intermediate, a high-energy structure that bridges the viral and cell membranes, where the HRN and the HRC are separated. The prehairpin intermediate spontaneously collapses into the postfusion structure—a six-helical bundle (6HB), with an inner trimeric coiled-coil formed by the HRN onto which the HRC folds (12, 14, 30, 40). The key to these events is the initial activation step, whereby HN triggers F to initiate the process. Structural and biophysical analyses of the paramyxovirus 6HB (30, 50, 51) suggest that inhibitors bind to the prehairpin intermediate and prevent its transition to the 6HB, thus inhibiting viral entry. The peptides bind to their complementary HR region and thereby prevent HRN and HRC from refolding into the stable 6HB structure required for fusion (3, 10, 40). The efficiency of F triggering by HN critically influences the degree of fusion mediated by F and thus the extent of viral entry (35). In addition, differences in the efficiency of triggering of the fusion process impact the efficacy of potential antiviral molecules that target intermediate states of the fusion protein (36).Paramyxoviruses cause important human illnesses, significantly contributing to global disease and mortality, ranging from lower-respiratory-tract diseases in infants caused by human parainfluenza virus types 1, 2, and 3 (HPIV1, -2, and -3) (9, 48), to highly lethal central nervous system diseases caused by the emerging paramyxoviruses HeV and NiV. No antiviral therapies or vaccines yet exist for these paramyxoviruses, and vaccines would be unlikely to protect the youngest infants. Antiviral agents, therefore, would be particularly beneficial. All paramyxoviruses possess two envelope glycoproteins directly involved in viral entry and pathogenesis: a fusion protein (F) and a receptor-binding protein (HN, H, or G). The paramyxovirus F proteins belong to the group of “class I” fusion proteins (44, 45), which also include the influenza virus hemagglutinin protein and the HIV-1 fusion protein gp120. The F protein is synthesized as a precursor protein (F0) that is proteolytically processed posttranslationally to form a trimer of disulfide-linked heterodimers (F1-F2). This cleavage event places the fusion peptide at the F1 terminus in the mature F protein and is essential for membrane fusion activity. The exact triggers that initiate a series of conformational changes in F leading to membrane fusion differ depending on the pathway the virus uses to enter the cell. In the case of HPIV, HeV, and NiV, the receptor-binding protein, hemagglutinin-neuraminidase (HN) (in HPIV3) or G (in HeV and NiV), binds to cellular surface receptors, brings the viral envelope into proximity with the plasma membrane, and activates the viral F protein. This receptor-ligand interaction is required for the F protein to mediate the fusion of the viral envelope with the host cell membrane (23, 33, 35).The HRC peptide regions of a number of paramyxoviruses, including Sendai virus, measles virus, Newcastle disease virus (NDV), respiratory syncytial virus (RSV), simian virus 5 (SV5), Hendra virus (HeV), and Nipah virus (NiV), can inhibit the infectivity of the homologous virus (17, 20, 31, 37, 47, 49, 52, 53). Recently, we showed that peptides derived from the HRC region of the F protein of HPIV3 are effective inhibitors of both HPIV and HeV/NiV fusion (31) and that, for HeV, the strength of HRC peptide binding to the corresponding HRN region correlates with the potency of fusion and infection inhibition (30). However, peptides derived from the HPIV3 F protein HRC region are more effective at inhibiting HeV/NiV fusion than HPIV3 fusion, despite a stronger homotypic HRN-HRC interaction for HPIV3 (30, 31). We showed (36) that the kinetics of fusion (kinetics of F activation) impacts sensitivity to inhibition by peptides, as is the case for HIV (39). Alterations in HPIV3 HN′s property of F activation affect the kinetics of F''s progression through its conformational changes, thus altering inhibitor efficacy. Once the extended intermediate stage of F has passed, and fusion proceeds, peptide inhibitors are ineffective. We have proposed that the design of effective inhibitors may require either targeting an earlier stage of F activation or increasing the concentration of inhibitor at the location of receptor binding, in order to enhance the access and association of the inhibitor with the intermediate-stage fusion protein (36).A substantial body of evidence supports the notion that viral fusion occurs in confined areas of the interacting viral and host membranes (26). For HIV-1, the lipid composition of the viral membrane is strikingly different from that of the host cell membrane; the former is particularly enriched in cholesterol and sphingomyelin (4, 5, 7, 8). Cholesterol and sphingolipids are often laterally segregated in membrane microdomains or “lipid rafts” (7, 11). In fact, the antiviral potency of the HIV-inhibitory HRC peptide C34 is dramatically increased by targeting it to the “lipid rafts” via the addition of a cholesterol group (16).We applied the targeting strategy based on cholesterol derivatization to paramyxoviruses, and we show here that by adding a cholesterol tag to HPIV3-derived HRC E459V (30) inhibitory peptides, we increased antiviral potency by 2 log units (50% inhibitory concentrations [IC50], <2 nM). We chose to use the HPIV3-derived peptides for HeV/NiV, because we have previously shown that they are far more effective inhibitors of HeV and NiV than the homotypic peptides (30, 31). We propose that the enhanced activity resulting from the addition of a cholesterol tag is a result of the targeting of the peptide to the plasma membrane, where fusion occurs.  相似文献   
198.
Radioisotope-based and mass spectrometry coupled to chromatographic techniques are the conventional methods for monitoring HMG-CoA reductase (HMGR) activity. Irrespective of offering adequate sensitivity, these methods are often cumbersome and time-consuming, requiring the handling of radiolabeled chemicals or elaborate ad-hoc derivatizing procedures. We propose a rapid and versatile reverse phase-HPLC method for assaying HMGR activity capable of monitoring the levels of both substrates (HMG-CoA and NADPH) and products (CoA, mevalonate, and NADP+) in a single 20 min run with no pretreatment required. The linear dynamic range was 10–26 pmol for HMG-CoA, 7–27 nmol for NADPH, 0.5–40 pmol for CoA and mevalonate, and 2–27 nmol for NADP+, and limit of detection values were 2.67 pmol, 2.77 nmol, 0.27 pmol, and 1.3 nmol, respectively.HMG-CoA reductase (HMGR) is the enzyme that catalyze the four-electron reductive deacylation of HMG-CoA to CoA and mevalonate (Fig. 1) (1). This reaction is the controlling step in the biosynthesis of sterols and isoprenoids (2, 3); hence, a large number of studies on the modulation of HMGR activity are continuously performed in the effort of developing new drugs in the treatment of hypercholesterolemic disorders (1).Open in a separate windowFig. 1.Schematic representation of HMGR enzymatic reaction.HMGR activity is conventionally assayed using elaborate radiochemical assay (49), chromatographic techniques coupled with mass spectrometry (1015), or spectrophotometrically by monitoring the decrease in the absorbance of cofactor NADPH at 340 nm (16).Herein, as an alternative for laboratories with no access to the expensive LC/MS equipment, we propose a rapid and adequately sensitive HPLC-based method capable of monitoring both the levels of all the species involved in the equilibrium in a single analysis and the kinetics of HMGR-catalyzed reactions.  相似文献   
199.
The solution structure of Escherichia coli acylphosphatase (E. coli AcP), a small enzyme catalyzing the hydrolysis of acylphosphates, was determined by (1)H and (15)N NMR and restrained modelling calculation. In analogy with the other members of AcP family, E. coli AcP shows an alpha/beta sandwich domain composed of four antiparallel and one parallel beta-strand, assembled in a five-stranded beta-sheet facing two antiparallel alpha-helices. The pairwise RMSD values calculated for the backbone atoms of E. coli and Sulfolobus solfataricus AcP, Bovine common type AcP and Horse muscle AcP are 2.18, 5.31 and 5.12 A, respectively. No significant differences are present in the active site region and the catalytic residue side chains are consistently positioned in the structures.  相似文献   
200.
Activated CD8+ T cells can differentiate into type 1 (Tc1) cells, producing mainly IFN-gamma, and type 2 (Tc2) cells, producing mostly IL-4, IL-5, and IL-10. Tc1 cells are potent CTL involved in the defense against intracellular pathogens and cancer cells. The role of Tc2 cells in the immune response is largely unknown, although their presence in chronic infections, cancer, and autoimmune diseases is associated with disease severity and progression. Here, we show that mouse Tc2 cells modify, through a cell-to-cell contact mechanism, the function of bone marrow-derived dendritic cells (DC). Indeed, Tc2-conditioned DC displayed a reduced expression of MHC class II and costimulatory molecules, produced IL-10 instead of IL-12, and favored the differentiation of both naive CD4+ and CD8+ T cells toward type 2 cells in the absence of added polarizing cytokines. The novel function for Tc2 cells suggests a type 2 loop in which Tc2 cells modify DC function and favor differentiation of naive T cells to type 2 cells. The type 2 loop may at least in part explain the unexpected high frequency of type 2 cells during a chronic exposure to the Ag.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号