首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1942篇
  免费   136篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   100篇
  2020年   49篇
  2019年   65篇
  2018年   77篇
  2017年   55篇
  2016年   85篇
  2015年   134篇
  2014年   144篇
  2013年   167篇
  2012年   202篇
  2011年   174篇
  2010年   104篇
  2009年   87篇
  2008年   108篇
  2007年   87篇
  2006年   76篇
  2005年   61篇
  2004年   63篇
  2003年   45篇
  2002年   29篇
  2001年   10篇
  2000年   9篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有2078条查询结果,搜索用时 701 毫秒
961.
962.
Parasympathetic regulation of sinoatrial node (SAN) pacemaker activity modulates multiple ion channels to temper heart rate. The functional role of the G-protein–activated K+ current (IKACh) in the control of SAN pacemaking and heart rate is not completely understood. We have investigated the functional consequences of loss of IKACh in cholinergic regulation of pacemaker activity of SAN cells and in heart rate control under physiological situations mimicking the fight or flight response. We used knockout mice with loss of function of the Girk4 (Kir3.4) gene (Girk4−/− mice), which codes for an integral subunit of the cardiac IKACh channel. SAN pacemaker cells from Girk4−/− mice completely lacked IKACh. Loss of IKACh strongly reduced cholinergic regulation of pacemaker activity of SAN cells and isolated intact hearts. Telemetric recordings of electrocardiograms of freely moving mice showed that heart rate measured over a 24-h recording period was moderately increased (10%) in Girk4−/− animals. Although the relative extent of heart rate regulation of Girk4−/− mice was similar to that of wild-type animals, recovery of resting heart rate after stress, physical exercise, or pharmacological β-adrenergic stimulation of SAN pacemaking was significantly delayed in Girk4−/− animals. We conclude that IKACh plays a critical role in the kinetics of heart rate recovery to resting levels after sympathetic stimulation or after direct β-adrenergic stimulation of pacemaker activity. Our study thus uncovers a novel role for IKACh in SAN physiology and heart rate regulation.  相似文献   
963.
The capacity of HDL to induce cell cholesterol efflux is considered one of its main antiatherogenic properties. Little is known about the impact of such HDL function on vascular physiology. We investigated the relationship between ABCA1-dependent serum cholesterol efflux capacity (CEC), an HDL functionality indicator, and pulse wave velocity (PWV), an indicator of arterial stiffness. Serum of 167 healthy subjects was used to conduct CEC measurement, and carotid-femoral PWV was measured with a high-fidelity tonometer. J774 macrophages, labeled with [3H]cholesterol and stimulated to express ABCA1, were exposed to sera; the difference between cholesterol efflux from stimulated and unstimulated cells provided specific ABCA1-mediated CEC. PWV is inversely correlated with ABCA1-dependent CEC (r = −0.183; P = 0.018). Moreover, controlling for age, sex, body mass index, mean arterial pressure, serum LDL, HDL-cholesterol, and fasting plasma glucose, PWV displays a significant negative regression on ABCA1-dependent CEC (β = −0.204; 95% confidence interval, −0.371 to −0.037). The finding that ABCA1-dependent CEC, but not serum HDL cholesterol level (r = −0.002; P = 0.985), is a significant predictor of PWV in healthy subjects points to the relevance of HDL function in vascular physiology and arterial stiffness prevention.  相似文献   
964.
965.
Measles virus (MV) infection causes an acute childhood disease that can include infection of the central nervous system and can rarely progress to severe neurological disease for which there is no specific treatment. We generated potent antiviral peptide inhibitors of MV entry and spreading and MV-induced cell fusion. Dimers of MV-specific peptides derived from the C-terminal heptad repeat region of the MV fusion protein, conjugated to cholesterol, efficiently protect SLAM transgenic mice from fatal MV infection. Fusion inhibitors hold promise for the prophylaxis of MV infection in unvaccinated and immunocompromised people, as well as potential for the treatment of grave neurological complications of measles.  相似文献   
966.
Epithelial-to-mesenchymal transition (EMT) is an embryonic program used by cancer cells to acquire invasive capabilities becoming metastatic. ΔRon, a constitutively active isoform of the Ron tyrosine kinase receptor, arises from skipping of Ron exon 11 and provided the first example of an alternative splicing variant causatively linked to the activation of tumor EMT. Splicing of exon 11 is controlled by two adjacent regulatory elements, a silencer and an enhancer of splicing located in exon 12. The alternative splicing factor and oncoprotein SRSF1 directly binds to the enhancer, induces the production of ΔRon and activates EMT leading to cell locomotion. Interestingly, we now find an important role for hnRNP A1 in controlling the activity of the Ron silencer. HnRNP A1 is able to antagonize the binding of SRSF1 and prevent exon skipping. Notably, hnRNP A1, by inhibiting the production of ΔRon, activates the reversal program, namely the mesenchymal-to-epithelial transition, which instead occurs at the final metastasis sites. Also, hnRNP A1 affects Ron splicing by regulating the expression level of hnRNP A2/B1, which similarly to SRSF1 can promote ΔRon production. These results shed light on how splicing regulation contributes to the tumor progression and provide potential targets to develop anticancer therapies.  相似文献   
967.
Preparation of the holotype specimen of Bobosaurus forojuliensis, a large sauropterygian from the lower Carnian of northeastern Italy, revealed new morphological data relevant in establishing its phylogenetic affinities among pistosauroid taxa and its relationships with plesiosaurians. Inclusion of B. forojuliensis in two phylogenetic analyses focusing, respectively, on sauropterygians and pistosauroids agreed in placing the Italian taxon as closer to plesiosaurians than to other pistosauroids. The phylogenetic interpretation of Bobosaurus was not biased by assumptions on character weighting, is consistent with its relatively younger age compared to most pistosauroids, extends the fossil record of the plesiosaurian basal lineage back to the Carnian and supports the earliest diversification of the clade during the Late Triassic in agreement with the record of several distinct lineages of rhomaleosaurids, plesiosauroids and pliosauroids in the lowermost Jurassic. Bobosaurus shows that the evolution of the plesiosaurian body plan from the ancestral pistosauroid grade was a step-wise process, and that some of the vertebral and appendicular specialisations of Jurassic and Cretaceous plesiosaurians had already developed in the earliest Late Triassic.  相似文献   
968.
The role played by phytohormone signaling in the modulation of DNA repair gene and the resulting effects on plant adaptation to genotoxic stress are poorly investigated. Information has been gathered using the Arabidopsis ABA (abscisic acid) overly sensitive mutant abo4-1, defective in the DNA polymerase ε function that is required for DNA repair and recombination. Similarly, phytohormone-mediated regulation of the Ku genes, encoding the Ku heterodimer protein involved in DNA repair, cell cycle control and telomere homeostasis has been demonstrated, highlighting a scenario in which hormones might affect genome stability by modulating the frequency of homologous recombination, favoring plant adaptation to genotoxic stress. Within this context, the characterisation of Arabidopsis AtKu mutants allowed disclosing novel connections between DNA repair and phytohormone networks. Another intriguing aspect deals with the emerging correlation between plant defense response and the mechanisms responsible for genome stability. There is increasing evidence that systemic acquired resistance (SAR) and homologous recombination share common elements represented by proteins involved in DNA repair and chromatin remodeling. This hypothesis is supported by the finding that volatile compounds, such as methyl salicylate (MeSA) and methyl jasmonate (MeJA), participating in the plant-to-plant communication can trigger genome instability in response to genotoxic stress agents. Phytohormone-mediated control of genome stability involves also chromatin remodeling, thus expanding the range of molecular targets. The present review describes the most significant advances in this specific research field, in the attempt to provide a better comprehension of how plant hormones modulate DNA repair proteins as a function of stress.  相似文献   
969.
Melphalan has been a mainstay of multiple myeloma (MM) therapy for many years. However, following treatment with this alkylator, malignant plasma cells usually escape both apoptosis and cell cycle control, and acquire drug-resistance resulting in tumor progression. Bendamustine is being used in MM patients refractory to conventional DNA-damaging agents, although the mechanisms driving this lack of cross-resistance are still undefined. Here, we investigated the molecular pathway of bendamustine-induced cell death in melphalan-sensitive and melphalan-resistant MM cell lines. Bendamustine affected cell survival resulting in secondary necrosis, and prompted cell death primarily through caspase-2 activation. Also, bendamustine blocked the cell cycle in the G2/M phase and induced micronucleation, erratic chromosome spreading and mitotic spindle perturbations in melphalan-resistant MM cells. In these cells, both Aurora kinase A (AURKA) and Polo-like kinase-1 (PLK-1), key components of the spindle-assembly checkpoint, were down-regulated following incubation with bendamustine, whereas levels of Cyclin B1 increased as a consequence of the prolonged mitotic arrest induced by the drug. These findings indicate that, at least in vitro, bendamustine drives cell death by promoting mitotic catastrophe in melphalan-resistant MM cells. Hence, activation of this alternative pathway of cell death may be a novel approach to the treatment of apoptosis-resistant myelomas.  相似文献   
970.
Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen‐fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号