首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   143篇
  2233篇
  2023年   22篇
  2022年   48篇
  2021年   100篇
  2020年   51篇
  2019年   69篇
  2018年   80篇
  2017年   57篇
  2016年   85篇
  2015年   144篇
  2014年   153篇
  2013年   171篇
  2012年   205篇
  2011年   176篇
  2010年   105篇
  2009年   87篇
  2008年   116篇
  2007年   93篇
  2006年   81篇
  2005年   66篇
  2004年   64篇
  2003年   51篇
  2002年   31篇
  2001年   19篇
  2000年   12篇
  1999年   5篇
  1998年   7篇
  1997年   9篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   8篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   2篇
  1985年   13篇
  1984年   5篇
  1983年   7篇
  1982年   2篇
  1980年   6篇
  1979年   6篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   5篇
  1971年   5篇
  1970年   3篇
排序方式: 共有2233条查询结果,搜索用时 15 毫秒
11.
Leaf senescence is the orderly dismantling of older tissue that allows recycling of nutrients to developing portions of the plant and is accompanied by major changes in gene expression. Histone modifications correlate to levels of gene expression, and this study utilizes ChIP-seq to classify activating H3K4me3 and silencing H3K27me3 marks on a genome-wide scale for soil-grown mature and naturally senescent Arabidopsis leaves. ChIPnorm was used to normalize data sets and identify genomic regions with significant differences in the two histone methylation patterns, and the differences were correlated to changes in gene expression. Genes that showed an increase in the H3K4me3 mark in older leaves were senescence up-regulated, while genes that showed a decrease in the H3K4me3 mark in the older leaves were senescence down-regulated. For the H3K27me3 modification, genes that lost the H3K27me3 mark in older tissue were senescence up-regulated. Only a small number of genes gained the H3K27me3 mark, and these were senescence down-regulated. Approximately 50% of senescence up-regulated genes lacked the H3K4me3 mark in both mature and senescent leaf tissue. Two of these genes, SAG12 and At1g73220, display strong senescence up-regulation without the activating H3K4me3 histone modification. This study provides an initial epigenetic framework for the developmental transition into senescence.  相似文献   
12.
13.
The United States is somewhat unique among major fishing nations in mandating the rebuilding of overfished stocks within a specified period of time, a requirement first enacted in 1996. This study is based primarily on a review of trends in the 2000–2010 period in fishing mortality and biomass levels of stocks in rebuilding programs, supplemented by recent U.S. and international scientific literature. The major objectives of this study are, first, to assess progress achieved to date in these rebuilding plans, and, second, to identify the most significant obstacles to successful rebuilding. Sufficient data exists to monitor trends in fishing mortality and biomass levels number for just 35 stocks, out of a total 59 stocks that are currently rebuilding or have recently completed the rebuilding process. Most stocks in rebuilding plans are finfish, and the majority of are managed in relatively few fishery management plans governing fisheries in the Atlantic, Gulf of Mexico and northwest Pacific portions of the U.S. 200-mile exclusive economic zone. Therefore, the findings of this report are tentative and do not necessarily reflect broader trends in U.S. federally managed fisheries. This report shows substantial progress in about two-thirds of the 35 rebuilding stocks included in this report. Progress is defined in two ways: either the rebuilding plan has reduced fishing mortality to an acceptably low level, or it has brought about stock recovery to a mandated target. Most significantly, the assessment of rebuilding plan case studies indicates that reductions in fishing mortality, especially when implemented early in the programs and maintained as long as necessary, lead to significant increases in stock abundance in roughly four of five stocks. At the same time, the case studies also show that, in about one-third of the rebuilding plans, recovery measures have not yet produced the desired outcomes. The two most common problems are failure to adequately control fishing mortality and low resilience (high susceptibility to fishing pressure) of certain categories of overfished stocks.  相似文献   
14.
The alpha-hydroxyacid 2-hydroxy-4-methylthiobutanoic acid (the so-called methionine hydroxy-analogue, MHA), largely used in animal nutrition as a source of methionine, forms stable metal chelates with divalent metals of formula [[CH(3)SCH(2)CH(2)CH(OH)COO](2)M].ZnH(2)O. Protonation and zinc(II) complex formation constants have been determined by pH-metry at 25 degrees C; the ternary system Zn(2+)/MHA/glycine was also studied by pH-metry and the formation constant of the species [ZnLA] was determined [log beta=6.57(11)]. Experiments in vitro with human intestinal CACO-2 cells indicated that the MHA/Fe chelate was taken up by the cells without any apparent toxic effect.  相似文献   
15.
Sic1, cyclin-dependent kinase inhibitor of budding yeast, is synthesized in anaphase and largely degraded at the S-phase onset to regulate timing of DNA synthesis. Sic1 interacts with phase-specific B-type cyclin (Clb)-kinase (Cdk1) complexes, central regulators in cell cycle control. Its appearance is timed to mediate reduction in kinase activities at appropriate stages. Clbs are unstable proteins with extremely short half-lives. Interactions of Sic1 with Clbs have been detected both in vitro and in vivo by high-throughput genome-wide screenings. Furthermore, we have recently shown that Sic1 regulates waves of Clbs, acting as a timer in their appearance, thus controlling Cdk1-Clbs activation. The molecular mechanism is not yet fully understood but is hypothesized to occur via stoichiometric binding of Sic1 to Cdk1-Clb complexes. Using F?rster resonance energy transfer (FRET) via fluorescence lifetime imaging microscopy (FLIM), we showed association of Sic1 to Clb cyclins in living yeast cells. This finding is consistent with the notion that inhibition of kinase activity can occur over the whole cell cycle progression despite variable Sic1 levels. Specifically, Sic1/Clb3 interaction was observed for the first time, and Sic1/Clb2 and Sic1/Clb5 pairs were confirmed, but no Sic1/Clb4 interaction was found, which suggests that, despite high functional homology between Clbs, only some of them can target Sic1 function in vivo.  相似文献   
16.
Barberis M 《The FEBS journal》2012,279(18):3386-3410
Cellular systems biology aims to uncover design principles that describe the properties of biological networks through interaction of their components in space and time. The cell cycle is a complex system regulated by molecules that are integrated into functional modules to ensure genome integrity and faithful cell division. In budding yeast, cyclin-dependent kinases (Cdk1/Clb) drive cell cycle progression, being activated and inactivated in a precise temporal sequence. In this module, which we refer to as the 'Clb module', different Cdk1/Clb complexes are regulated to generate waves of Clb activity, a functional property of cell cycle control. The inhibitor Sic1 plays a critical role in the Clb module by binding to and blocking Cdk1/Clb activity, ultimately setting the timing of DNA replication and mitosis. Fifteen years of research subsequent to the identification of Sic1 have lead to the development of an integrative approach that addresses its role in regulating the Clb module. Sic1 is an intrinsically disordered protein and achieves its inhibitory function by cooperative binding, where different structural regions stretch on the Cdk1/Clb surface. Moreover, Sic1 promotes S?phase entry, facilitating Cdk1/Clb5 nuclear transport, and therefore revealing a double function of inhibitor/activator that rationalizes a mechanism to prevent precocious DNA replication. Interestingly, the investigation of Clb temporal dynamics by mathematical modelling and experimental validation provides evidence that Sic1 acts as a timer to coordinate oscillations of Clb cyclin waves. Here we review these findings, focusing on the design principle underlying the Clb module, which highlights the role of Sic1 in regulating phase-specific Cdk1/Clb activities.  相似文献   
17.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   
18.
Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings.  相似文献   
19.
In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A1, A2A, A2B and A3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA1 and hA2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A1/A2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA1 Ki?=?10.2?nM; hA2A Ki?=?4.72?nM) and behaved as a potent A1/A2A antagonist/inverse agonist (hA1 IC50?=?13.4?nM; hA2A IC50?=?5.34?nM).  相似文献   
20.
Shiga toxins (Stx) play an important role in the pathogenesis of hemolytic uremic syndrome, a life-threatening renal sequela of human intestinal infection caused by specific Escherichia coli strains. Stx target a restricted subset of human endothelial cells that possess the globotriaosylceramide receptor, like that in renal glomeruli. The toxins, composed of five B chains and a single enzymatic A chain, by removing adenines from ribosomes and DNA, trigger apoptosis and the production of pro-inflammatory cytokines in target cells. Because bacteria are confined to the gut, the toxins move to the kidney through the circulation. Polymorphonuclear leukocytes (PMN) have been indicated as the carriers that "piggyback" shuttle toxins to the kidney. However, there is no consensus on this topic, because not all laboratories have been able to reproduce the Stx/PMN interaction. Here, we demonstrate that conformational changes of Shiga toxin 1, with reduction of α-helix content and exposition to solvent of hydrophobic tryptophan residues, cause a loss of PMN binding activity. The partially unfolded toxin was found to express both enzymatic and globotriaosylceramide binding activities being fully active in intoxicating human endothelial cells; this suggests the presence of a distinct PMN-binding domain. By reviewing functional and structural data, we suggest that A chain moieties close to Trp-203 are recognized by PMN. Our findings could help explain the conflicting results regarding Stx/PMN interactions, especially as the groups reporting positive results obtained Stx by single-step affinity chromatography, which could have preserved the correct folding of Stx with respect to more complicated multi-step purification methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号