首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1906篇
  免费   136篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   100篇
  2020年   49篇
  2019年   65篇
  2018年   75篇
  2017年   55篇
  2016年   81篇
  2015年   133篇
  2014年   143篇
  2013年   167篇
  2012年   199篇
  2011年   170篇
  2010年   101篇
  2009年   85篇
  2008年   109篇
  2007年   85篇
  2006年   72篇
  2005年   60篇
  2004年   63篇
  2003年   44篇
  2002年   29篇
  2001年   10篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有2042条查询结果,搜索用时 333 毫秒
961.
Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.  相似文献   
962.
One of the central aims of cancer research is to identify and characterize cancer-causing alterations in cancer genomes. In recent years, unprecedented advances in genome-wide sequencing, functional genomics technologies for RNA interference screens and methods for evaluating three-dimensional chromatin organization in vivo have resulted in important discoveries regarding human cancer. The cancer-causing genes identified from these new genome-wide technologies have also provided opportunities for effective and personalized cancer therapy. In this review, we describe some of the most recent technologies for cancer gene discovery. We also provide specific examples in which these technologies have proven remarkably successful in uncovering important cancer-causing alterations.  相似文献   
963.
Human islet amyloid polypeptide (hIAPP) is known to misfold and aggregate into amyloid deposits that may be found in pancreatic tissues of patients affected by type 2 diabetes. Recent studies have shown that the highly amyloidogenic peptide LANFLVH, corresponding the N-terminal 12–18 region of IAPP, does not induce membrane damage. Here we assess the role played by the aromatic residue Phe in driving both amyloid formation and membrane interaction of LANFLVH. To this aim, a set of variant heptapeptides in which the aromatic residue Phe has been substituted with a Leu and Ala is studied. Differential scanning calorimetry (DSC) and membrane-leakage experiments demonstrated that Phe substitution noticeably affects the peptide-induced changes in the thermotropic properties of the lipid bilayer but not its membrane damaging potential. Atomic force microscopy (AFM), ThT fluorescence and Congo red birefringence assays evidenced that the Phe residue is not required for fibrillogenesis, but it can influence the self-assembling kinetics. Molecular dynamics simulations have paralleled the outcome of the experimental trials also providing informative details about the structure of the different peptide assemblies. These results support a general theory suggesting that aromatic residues, although capable of affecting the self-assembly kinetics of small peptides and peptide-membrane interactions, are not essential either for amyloid formation or membrane leakage, and indicate that other factors such as β-sheet propensity, size and hydrophobicity of the side chain act synergistically to determine peptide properties.  相似文献   
964.
965.
Treatment of the pregnant ewe with glucocorticoids early in pregnancy results in offspring with hypertension. This study examined whether glucocorticoids can reduce nephron formation or alter gene expression for sodium channels in the late gestation fetus. Sodium channel expression was also examined in 2-mo-old lambs, while arterial pressure and renal function was examined in adult female offspring before and during 6 wk of increased dietary salt intake. Pregnant ewes were treated with saline (SAL), dexamethasone (DEX; 0.48 mg/h) or cortisol (CORT; 5 mg/h) over days 26-28 of gestation (term = 150 days). At 140 days of gestation, glomerular number in CORT and DEX animals was 40 and 25% less, respectively, compared with SAL controls. Real-time PCR showed greater gene expression for the epithelial sodium channel (α-, β-, γ-subunits) and Na(+)-K(+)-ATPase (α-, β-, γ-subunits) in both the DEX and CORT group fetal kidneys compared with the SAL group with some of these changes persisting in 2-mo-old female offspring. In adulthood, sheep treated with dexamethasone or cortisol in utero had elevated arterial pressure and an apparent increase in single nephron glomerular filtration rate, but global renal hemodynamics and excretory function were normal and arterial pressure was not salt sensitive. Our findings show that the nephron-deficit in sheep exposed to glucocorticoids in utero is acquired before birth, so it is a potential cause, rather than a consequence, of their elevated arterial pressure in adulthood. Upregulation of sodium channels in these animals could provide a mechanistic link to sustained increases in arterial pressure in cortisol- and dexamethasone-exposed sheep, since it would be expected to promote salt and water retention during the postnatal period.  相似文献   
966.
β2‐Microglobulin has been a model system for the study of fibril formation for 20 years. The experimental study of β2‐microglobulin structure, dynamics, and thermodynamics in solution, at atomic detail, along the pathway leading to fibril formation is difficult because the onset of disorder and aggregation prevents signal resolution in Nuclear Magnetic Resonance experiments. Moreover, it is difficult to characterize conformers in exchange equilibrium. To gain insight (at atomic level) on processes for which experimental information is available at molecular or supramolecular level, molecular dynamics simulations have been widely used in the last decade. Here, we use molecular dynamics to address three key aspects of β2‐microglobulin, which are known to be relevant to amyloid formation: (1) 60 ns molecular dynamics simulations of β2‐microglobulin in trifluoroethanol and in conditions mimicking low pH are used to study the behavior of the protein in environmental conditions that are able to trigger amyloid formation; (2) adaptive biasing force molecular dynamics simulation is used to force cis‐trans isomerization at Proline 32 and to calculate the relative free energy in the folded and unfolded state. The native‐like trans‐conformer (known as intermediate 2 and determining the slow phase of refolding), is simulated for 10 ns, detailing the possible link between cis‐trans isomerization and conformational disorder; (3) molecular dynamics simulation of highly concentrated doxycycline (a molecule able to suppress fibril formation) in the presence of β2‐microglobulin provides details of the binding modes of the drug and a rationale for its effect. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
967.
The initiation of the intracellular symbiosis that would give rise to mitochondria and eukaryotes was a major event in the history of life on earth. Hypotheses to explain eukaryogenesis fall into two broad and competing categories: those proposing that the host was a phagocytotic proto-eukaryote that preyed upon the free-living mitochondrial ancestor (hereafter FMA), and those proposing that the host was an archaebacterium that engaged in syntrophy with the FMA. Of key importance to these hypotheses are whether the FMA was motile or nonmotile, and the atmospheric conditions under which the FMA thrived. Reconstructions of the FMA based on genome content of Rickettsiales representatives-generally considered to be the closest living relatives of mitochondria-indicate that it was nonmotile and aerobic. We have sequenced the genome of Candidatus Midichloria mitochondrii, a novel and phylogenetically divergent member of the Rickettsiales. We found that it possesses unique gene sets found in no other Rickettsiales, including 26 genes associated with flagellar assembly, and a cbb(3)-type cytochrome oxidase. Phylogenomic analyses show that these genes were inherited in a vertical fashion from an ancestral α-proteobacterium, and indicate that the FMA possessed a flagellum, and could undergo oxidative phosphorylation under both aerobic and microoxic conditions. These results indicate that the FMA played a more active and potentially parasitic role in eukaryogenesis than currently appreciated and provide an explanation for how the symbiosis could have evolved under low levels of oxygen.  相似文献   
968.
A facile synthesis of model 4-oxopyrido[3',2':4,5]thieno[3,2-b]indole-3-carboxylic acids 9a-e was achieved via Stille arylation of 2-chloro-3-nitro-4-oxothieno[2,3-b]pyridine-5-carboxylate and a subsequent microwave-assisted phosphite-mediated Cadogan reaction. The new compounds were tested for their in vitro antimicrobial and antiproliferative activity. Compounds 9a-c and 9e exhibited very high potency against Gram positive Bacillus subtilis and Bacillus megaterium at concentrations 0.000015-0.007 μg/mL. They also displayed excellent activity towards other Gram positive bacilli and staphylococci and Gram negative Haemophilus influenzae, being in most cases superior or equal to commercial fluoroquinolones. Both 9a and 9c were inhibitors of the DNA gyrase activity. As concerns antitumor properties, compounds 9b-e showed growth inhibition of MCF-7 breast tumor and A549 non-small cell lung cancer cells with IC(50) 1.6-2.8 μM and 2.6-6.9 μM, respectively, coupled with absence of cytotoxicity towards normal cells. These compounds are promising as dual acting chemotherapeutics.  相似文献   
969.
The concept of innateness is often used in explanations and classifications of biological and cognitive traits. But does this concept have a legitimate role to play in contemporary scientific discourse? Empirical studies and theoretical developments have revealed that simple and intuitively appealing ways of classifying traits (e.g. genetically specified versus owing to the environment) are inadequate. They have also revealed a variety of scientifically interesting ways of classifying traits each of which captures some aspect of the innate/non-innate distinction. These include things such as whether a trait is canalized, whether it has a history of natural selection, whether it developed without learning or without a specific set of environmental triggers, whether it is causally correlated with the action of certain specific genes, etc. We offer an analogy: the term ‘jade’ was once thought to refer to a single natural kind; it was then discovered that it refers to two different chemical compounds, jadeite and nephrite. In the same way, we argue, researchers should recognize that ‘innateness’ refers not to a single natural kind but to a set of (possibly related) natural kinds. When this happens, it will be easier to progress in the field of biological and cognitive sciences.  相似文献   
970.
While the pro-differentiation and tumour suppressive functions of Notch signalling in keratinocytes are well established, the underlying mechanisms remain poorly understood. We report here that interferon regulatory factor 6 (IRF6), an IRF family member with an essential role in epidermal development, is induced in differentiation through a Notch-dependent mechanism and is a primary Notch target in keratinocytes and keratinocyte-derived SCC cells. Increased IRF6 expression contributes to the impact of Notch activation on growth/differentiation-related genes, while it is not required for induction of 'canonical' Notch targets like p21(WAF1/Cip1), Hes1 and Hey1. Down-modulation of IRF6 counteracts differentiation of primary human keratinocytes in vitro and in vivo, promoting ras-induced tumour formation. The clinical relevance of these findings is illustrated by the strikingly opposite pattern of expression of Notch1 and IRF6 versus epidermal growth factor receptor in a cohort of clinical SCCs, as a function of their grade of differentiation. Thus, IRF6 is a primary Notch target in keratinocytes, which contributes to the role of this pathway in differentiation and tumour suppression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号