首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   10篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   10篇
  2001年   10篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1971年   1篇
排序方式: 共有142条查询结果,搜索用时 265 毫秒
81.
The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the “translocators”) are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development.  相似文献   
82.
83.
Polyphosphate (polyP) is a linear polymer consisting of tens to hundreds of phosphate molecules joined together by high-energy anhydride bonds. These polymers are found in virtually all prokaryotic and eukaryotic cells and perform many functions; prominent among them are the responses to many stresses. Polyphosphate is synthesized by polyP kinase (PPK), using the terminal phosphate of ATP as the substrate, and degraded to inorganic phosphate by both endo- and exopolyphosphatases. Here we report the crystal structure and analysis of the polyphosphate phosphatase PPX from Escherichia coli O157:H7 refined at 2.2 Angstroms resolution. PPX is made of four domains. Domains I and II display structural similarity with one another and share the ribonuclease-H-like fold. Domain III bears structural similarity to the N-terminal, HD domain of SpoT. Domain IV, the smallest domain, has structural counterparts in cold-shock associated RNA-binding proteins but is of unknown function in PPX. The putative PPX active site is located at the interface between domains I and II. In the crystal structure of PPX these two domains are close together and represent the "closed" state. Comparison with the crystal structure of PPX/GPPA from Aquifex aeolicus reveals close structural similarity between domains I and II of the two enzymes, with the PPX/GPPA representing an "open" state. A striking feature of the dimer is a deep S-shaped canyon extending along the dimer interface and lined with positively charged residues. The active site region opens to this canyon. We postulate that this is a likely site of polyP binding.  相似文献   
84.
Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of l-ascorbate under anaerobic conditions. UlaD catalyzes a beta-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel beta-strands. The enzyme binds Zn(2+), which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the beta1/alpha1 loop and alpha3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands beta7 and beta8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.  相似文献   
85.
GM1 gangliosidosis is a lysosomal disorder caused by β-galactosidase deficiency due to mutations in the GLB1 gene. It is a rare neurodegenerative disorder with an incidence of about 1:100,000–1:200,000 live births worldwide. Here we review GLB1 mutations and clinical features from 65 Brazilian GM1 gangliosidosis patients. Molecular analysis showed 17 different mutations and c.1622–1627insG was the most frequent, accounting for 50% of the alleles. Cognitive impairment was the main clinical sign, observed in 82% of patients, followed by hepatosplenomegaly observed in 56% of patients. It was possible to establish a significant correlation between age at onset of symptoms preceding the first year of life and the presence of the mutation c.1622–1627insG (p = 0.03). Overall our findings differ from literature and represent the exclusive genotypic profile found in Brazilian GM1 gangliosidosis patients.  相似文献   
86.
The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.  相似文献   
87.
The dispersal of HIV-1 subtype B (HIV-1B) is a reflection of the movement of human populations in response to social, political, and geographical issues. The initial dissemination of HIV-1B outside Africa seems to have included the passive involvement of human populations from the Caribbean in spreading the virus to the United States. However, the exact pathways taken during the establishment of the pandemic in the Americas remain unclear. Here, we propose a geographical scenario for the dissemination of HIV-1B in the Americas, based on phylogenetic and genetic statistical analyses of 313 available sequences of the pol gene from 27 countries. Maximum likelihood and bayesian inference methods were used to explore the phylogenetic relationships between HIV-1B sequences, and molecular variance estimates were analyzed to infer the genetic structure of the viral population. We found that the initial dissemination and subsequent spread of subtype B in the Americas occurred via a single introduction event in the Caribbean around 1964 (1950-1967). Phylogenetic trees present evidence of several primary outbreaks in countries in South America, directly seeded by the Caribbean epidemic. Cuba is an exception insofar as its epidemic seems to have been introduced from South America. One clade comprising isolates from different countries emerged in the most-derived branches, reflecting the intense circulation of the virus throughout the American continents. Statistical analysis supports the genetic compartmentalization of the virus among the Americas, with a close relationship between the South American and Caribbean epidemics. These findings reflect the complex establishment of the HIV-1B pandemic and contribute to our understanding between the migration process of human populations and virus diffusion.  相似文献   
88.
Retinal photoreceptor phosphodiesterase (PDE6) is unique among the phosphodiesterase enzyme family not only for its catalytic heterodimer but also for its regulatory γ-subunits (Pγ) whose inhibitory action is released upon binding to the G-protein transducin. It is generally assumed that during visual excitation both catalytic sites are relieved of Pγ inhibition upon binding of two activated transducin molecules. Because PDE6 shares structural and pharmacological similarities with PDE5, we utilized radiolabeled PDE5 inhibitors to probe the catalytic sites of PDE6. The membrane filtration assay we used to quantify [3H]vardenafil binding to PDE6 required histone II-AS to stabilize drug binding to the active site. Under these conditions, [3H]vardenafil binds stoichiometrically to both the α- and β-subunits of the activated PDE6 heterodimer. [3H]vardenafil fails to bind to either the PDE6 holoenzyme or the PDE6 catalytic dimer reconstituted with Pγ, consistent with Pγ blocking access to the drug-binding sites. Following transducin activation of membrane-associated PDE6 holoenzyme, [3H]vardenafil binding increases in proportion to the extent of PDE6 activation. Both [3H]vardenafil binding and hydrolytic activity of transducin-activated PDE6 fail to exceed 50% of the value for the PDE6 catalytic dimer. However, adding a 1000-fold excess of activated transducin can stimulate the hydrolytic activity of PDE6 to its maximum extent. These results demonstrate that both subunits of the PDE6 heterodimer are able to bind ligands to the enzyme active site. Furthermore, transducin relieves Pγ inhibition of PDE6 in a biphasic manner, with only one-half of the maximum PDE6 activity efficiently attained during visual excitation.  相似文献   
89.
To evaluate the effect of dietary and management factors on boar hormonal status during ejaculation, 39 boars were canulated to determine the profiles of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17β-estradiol (E2), and testosterone (T) in blood plasma and seminal fluid. Prior to canulation, 18 boars were fed a basal diet (control), whereas the remainder (n = 21) were fed a basal diet supplemented with extra vitamins (supplemented). Within each dietary treatment, two regimens of semen collection were used over the 3 mo preceding the hormonal evaluation: three times per 2 wk (3/2) or three times per wk (3/1). Plasma E2 was lower (P < 0.01) before ejaculation (232.5 ± 22.6 pg/mL) than at the onset of ejaculation (255.2 ± 27.1 ng/mL). Plasma T increased from 5.14 ± 0.72, before ejaculation to 5.87 ± 0.86 ng/mL at the onset of ejaculation in supplemented boars, whereas it decreased from 5.15 ± 0.65 to 4.87 ± 0.70 ng/mL in controls (diet by time, P < 0.05). At the onset of ejaculation, plasma FSH was higher in 3/2 boars (0.436 ± 0.06 ng/mL) than in 3/1 boars (0.266 ± 0.04 ng/mL; P < 0.05). During ejaculation, plasma LH increased linearly (P < 0.01) from 0.59 ± 0.07 to 0.97 ± 0.10 ng/mL, and plasma E2 and T concentrations were correlated (r = 0.62, P < 0.01). Plasma FSH before and during ejaculation was negatively correlated with sperm production (r = −0.60, P < 0.01) and testicular weight (r = −0.50, P < 0.01). In conclusion, dietary and management factors had few impacts on hormonal profiles during ejaculation, but homeostasis of some hormones was related to some criteria of reproductive performance in boars.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号