首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1569篇
  免费   115篇
  国内免费   2篇
  2022年   12篇
  2021年   20篇
  2020年   6篇
  2019年   13篇
  2018年   19篇
  2017年   26篇
  2016年   37篇
  2015年   60篇
  2014年   57篇
  2013年   79篇
  2012年   102篇
  2011年   88篇
  2010年   53篇
  2009年   59篇
  2008年   98篇
  2007年   89篇
  2006年   86篇
  2005年   87篇
  2004年   86篇
  2003年   83篇
  2002年   90篇
  2001年   36篇
  2000年   25篇
  1999年   29篇
  1998年   11篇
  1997年   17篇
  1996年   14篇
  1995年   14篇
  1994年   21篇
  1993年   11篇
  1992年   30篇
  1991年   25篇
  1990年   18篇
  1989年   18篇
  1988年   15篇
  1987年   12篇
  1986年   16篇
  1985年   13篇
  1984年   11篇
  1983年   12篇
  1982年   17篇
  1981年   9篇
  1980年   7篇
  1979年   8篇
  1978年   4篇
  1973年   11篇
  1972年   4篇
  1971年   4篇
  1968年   4篇
  1966年   3篇
排序方式: 共有1686条查询结果,搜索用时 484 毫秒
891.
Little information is available regarding the intestinal bacteria of chimpanzees in the wild, due to the technical difficulties of studying intestinal bacteria in the field. In this study, molecular-based bacterial analyses were performed to overcome this difficulty because polymerase chain reaction (PCR)-based methods, such as temperature gradient gel electrophoresis (TGGE) and amplified ribosomal DNA restriction analysis (ARDRA), of the bacterial 16S rRNA gene can be applied to ethanol-fixed fecal samples. The common presence of bacteria belonging to the Clostridium rRNA sub-group XIVa, such as Ruminococcus obeum and Eubacterium sp., was indicated for Bossou wild chimpanzees by ARDRA. TGGE on partial 16S rDNA followed by hierarchical clustering analysis showed a systematic difference in the composition of intestinal microbiota between wild and captive chimpanzees. However, several TGGE bands commonly shared by wild and captured chimpanzees were excised, and their sequences were obtained. They were suggested to be the Clostridium leptum subgroup bacteria, Lactobacillus gasseri-like bacterium, and Bifidobacterium pseudocatenulatum- or B. catenulatum-like bacterium. These may be considered as common intestinal bacteria for chimpanzees, and may be transmitted vertically over generations.  相似文献   
892.
Fox-1 is a regulator of tissue-specific splicing, via binding to the element (U)GCAUG in mRNA precursors, in muscles and neuronal cells. Fox-1 can regulate splicing positively or negatively, most likely depending on where it binds relative to the regulated exon. In cases where the (U)GCAUG element lies in an intron upstream of the alternative exon, Fox-1 protein functions as a splicing repressor to induce exon skipping. Here we report the mechanism of exon skipping regulated by Fox-1, using the hF1γ gene as a model system. We found that Fox-1 induces exon 9 skipping by repressing splicing of the downstream intron 9 via binding to the GCAUG repressor elements located in the upstream intron 8. In vitro splicing analyses showed that Fox-1 prevents formation of the pre-spliceosomal early (E) complex on intron 9. In addition, we located a region of the Fox-1 protein that is required for inducing exon skipping. Taken together, our data show a novel mechanism of how RNA-binding proteins regulate alternative splicing.  相似文献   
893.
Enhanced endoplasmic reticulum (ER) stress has been implicated in various pathological situations including inflammation. During a search for compounds that regulate ER stress, we identified vaticanol B, a tetramer of resveratrol, as an agent that protects against ER stress-induced cell death. Vaticanol B suppressed the induction of unfolded protein response-targeted genes such as glucose-regulated protein 78 (GRP78) and C/EBP-homologous protein (CHOP) after cells were treated with ER stressors. Analysis in the mouse macrophage cell line RAW 264.7 revealed that vaticanol B also possesses a strong anti-inflammatory activity. Production of a variety of inflammatory modulators such as tumor necrosis factor-, nitric oxide, and prostaglandin E2 was inhibited by vaticanol B to a much greater extent than by monomeric or dimeric resveratrol after exposure of cells to lipopolysaccharide. Further investigations to determine the common mechanisms underlying the regulation of ER stress and inflammation by vaticanol B disclosed an important role for vaticanol B in regulation of basic gene expression and in prevention of the protein leakage from the ER into the cytosol in both conditions. These results suggest that vaticanol B is a novel anti-inflammatory agent that improves the ER environment by reducing the protein load on the ER and by maintaining the membrane integrity of the ER. gene expression; membrane integrity  相似文献   
894.
Inorganic phosphate (Pi) uptake across the vacuolar membrane of intact vacuoles isolated from Catharanthus roseus suspension-cultured cells was measured. Under low Pi status, Pi uptake into the vacuole was strongly activated compared to high Pi status. Since Pi uptake across the vacuolar membrane is correlated with H+ pumping, we examined the dependency of H+ pumping on plant Pi status. Both H+ pumping and the activities of the vacuolar H+-pumps, the V-type H+-ATPase and the H+-PPase were enhanced under low Pi status. Despite this increase in H+ pumping, Western blot analysis showed no distinct increase in the amount of proton pump proteins. Possible mechanisms for the activation of Pi uptake into the vacuole under low Pi status are discussed. Miwa Ohnishi and Tetsuro Mimura contributed equally to this work.  相似文献   
895.
International Journal of Primatology - Ecology is fundamental in the development, transmission, and perpetuity of primate technology. Previous studies on tool site selection have addressed the...  相似文献   
896.
Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end–tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration.  相似文献   
897.
Autophagy is a catabolic process conserved among eukaryotes. Under nutrient starvation, a portion of the cytoplasm is non‐selectively sequestered into autophagosomes. Consequently, ribosomes are delivered to the vacuole/lysosome for destruction, but the precise mechanism of autophagic RNA degradation and its physiological implications for cellular metabolism remain unknown. We characterized autophagy‐dependent RNA catabolism using a combination of metabolome and molecular biological analyses in yeast. RNA delivered to the vacuole was processed by Rny1, a T2‐type ribonuclease, generating 3′‐NMPs that were immediately converted to nucleosides by the vacuolar non‐specific phosphatase Pho8. In the cytoplasm, these nucleosides were broken down by the nucleosidases Pnp1 and Urh1. Most of the resultant bases were not re‐assimilated, but excreted from the cell. Bulk non‐selective autophagy causes drastic perturbation of metabolism, which must be minimized to maintain intracellular homeostasis.  相似文献   
898.
899.
We applied our multimodal nonlinear spectral imaging microscope to the measurement of rat cornea. We successfully obtained multiple nonlinear signals of coherent anti‐Stokes Raman scattering (CARS), third‐order sum frequency generation (TSFG), and second harmonic generation (SHG). Depending on the nonlinear optical processes, the cornea tissue was visualized with different image contrast mechanism simultaneously. Due to white‐light laser excitation, multiplex CARS and TSFG spectra were obtained. Combined multimodal and spectral analysis clearly elucidated the layered structure of rat cornea with molecular structural information. This study indicates that our multimodal nonlinear spectral microscope is a promising bioimaging method for tissue study.

Multimodal nonlinear spectral images of rat cornea at corneal epithelium and corneal stroma in the in‐plane (XY) direction. With use of the combinational analysis of different nonlinear optical processes, detailed molecular structural information is available without staining or labelling.  相似文献   

900.

Introduction

Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model.

Materials and Methods

An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice.

Results

Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining.

Conclusion

These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号