首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9968篇
  免费   613篇
  国内免费   2篇
  10583篇
  2022年   62篇
  2021年   112篇
  2020年   60篇
  2019年   86篇
  2018年   129篇
  2017年   130篇
  2016年   190篇
  2015年   291篇
  2014年   330篇
  2013年   594篇
  2012年   598篇
  2011年   610篇
  2010年   378篇
  2009年   371篇
  2008年   570篇
  2007年   568篇
  2006年   572篇
  2005年   522篇
  2004年   565篇
  2003年   499篇
  2002年   464篇
  2001年   231篇
  2000年   212篇
  1999年   225篇
  1998年   118篇
  1997年   127篇
  1996年   83篇
  1995年   101篇
  1994年   97篇
  1993年   84篇
  1992年   125篇
  1991年   124篇
  1990年   126篇
  1989年   101篇
  1988年   87篇
  1987年   78篇
  1986年   106篇
  1985年   102篇
  1984年   101篇
  1983年   81篇
  1982年   64篇
  1981年   70篇
  1980年   42篇
  1979年   59篇
  1978年   45篇
  1977年   40篇
  1976年   35篇
  1975年   21篇
  1974年   28篇
  1973年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The aim of the present study was to compare vascular dysfunction between the early (12 wk old) and later (36 wk old) stages of spontaneous diabetes in Goto-Kakizaki (GK) rats. We also evaluated the aortic expression of the alpha(2D)-adrenoceptor and endothelial nitric oxide synthase (eNOS). Vascular reactivity was assessed in thoracic aortas from age-matched control rats and 12- and 36-wk GK rats. Using RT-PCR and immunoblots, we also examined the changes in expression of the alpha(2D-)adrenoceptor and eNOS. In aortas from GK rats (vs. those from age-matched control rats): 1) the relaxation response to ACh was enhanced at 12 wk but decreased at 36 wk; 2) the relaxation response to sodium nitroprusside was decreased at both 12 and 36 wk, 3) norepinephrine (NE)-induced contractility was decreased at 12 wk but not at 36 wk, 4) the expressions of alpha(1B)- and alpha(1D)-adrenoceptors were unaffected, whereas those of alpha(2D)-adrenoceptor and eNOS mRNAs were increased at both 12 and 36 wk; and 5) NE- and ACh-stimulated NO(x) (nitrite and nitrate) levels were increased at 12 wk, although at 36 wk ACh-stimulated NO(x) was lower, whereas NE-stimulated NO(x) showed no change. These results clearly demonstrate that enhanced ACh-induced relaxation and impaired NE-induced contraction, due to NO overproduction via eNOS and increased alpha(2D)-adrenoceptor expression, occur in early-stage GK rats and that the impaired ACh-induced relaxation in later-stage GK rats is due to reductions in both NO production and NO responsiveness (but not in eNOS expression).  相似文献   
993.
Insulin receptor substrates (IRSs) 1 and 2 are postulated to control the activation of phosphatidylinositol 3-kinase (PI3K)-dependent signaling factors, namely, atypical protein kinase C (aPKC) and protein kinase B (PKB)/Akt, which mediate metabolic effects of insulin. However, it is uncertain whether aPKC and PKB are activated together or differentially in response to IRS-1 and IRS-2 activation in insulin-sensitive tissues. Presently, we examined insulin activation of aPKC and PKB in vastus lateralis muscle, adipocytes, and liver in wild-type and IRS-1 knockout mice, and observed striking tissue-specific differences. In muscle of IRS-1 knockout mice, the activation of both aPKC and PKB was markedly diminished. In marked contrast, only aPKC activation was diminished in adipocytes, and only PKB activation was diminished in liver. These results suggest that IRS-1 is required for: 1) activation of both aPKC and PKB in muscle; 2) aPKC, but not PKB, activation in adipocytes; and 3) PKB, but not aPKC, activation in liver. Presumably, IRS-2 or other PI3K activators account for the normal activation of aPKC in liver and PKB in adipocytes of IRS-1 knockout mice. These complexities in aPKC and PKB activation may be relevant to metabolic abnormalities seen in tissues in which IRS-1 or IRS-2 is specifically or predominantly down-regulated.  相似文献   
994.
MicroRNAs contribute to the pathogenesis of certain diseases and may serve as biomarkers. We analyzed glomerular microRNA expression in B6.MRLc1, which serve as a mouse model of autoimmune glomerulonephritis. We found that miR-26a was the most abundantly expressed microRNA in the glomerulus of normal C57BL/6 and that its glomerular expression in B6.MRLc1 was significantly lower than that in C57BL/6. In mouse kidneys, podocytes mainly expressed miR-26a, and glomerular miR-26a expression in B6.MRLc1 mice correlated negatively with the urinary albumin levels and podocyte-specific gene expression. Puromycin-induced injury of immortalized mouse podocytes decreased miR-26a expression, perturbed the actin cytoskeleton, and increased the release of exosomes containing miR-26a. Although miR-26a expression increased with differentiation of immortalized mouse podocytes, silencing miR-26a decreased the expression of genes associated with the podocyte differentiation and formation of the cytoskeleton. In particular, the levels of vimentin and actin significantly decreased. In patients with lupus nephritis and IgA nephropathy, glomerular miR-26a levels were significantly lower than those of healthy controls. In B6.MRLc1 and patients with lupus nephritis, miR-26a levels in urinary exosomes were significantly higher compared with those for the respective healthy control. These data indicate that miR-26a regulates podocyte differentiation and cytoskeletal integrity, and its altered levels in glomerulus and urine may serve as a marker of injured podocytes in autoimmune glomerulonephritis.  相似文献   
995.
Isolation and identification of l-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and l-1-methyl-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline from seeds and callus of S. hassjoo are described. Administration of [β-14C]-labelled DOPA to a callus culture of this legume resulted in the incorporation of radioactivity into l-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, l-1-methyl-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and stizolobic acid, which was confirmed by constant specific radioactivity after co-crystallization with authentic samples of each compound.  相似文献   
996.
997.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   
998.
999.
As body composition in Asian populations is largely different from Western populations, a healthy BMI could also differ between the two populations. Thus, further study is needed to determine whether a healthy BMI in Asians should be lower than Western populations, as recommended by the World Health Organization (WHO). We investigated the relationship between BMI and mortality in a sample of 8,924 Japanese men and women without stroke or heart disease. During 19 years of follow-up, 1,718 deaths were observed. We found a U-shaped relationship between BMI and fatal events. Risk of total mortality was highest in participants with BMI <18.5 kg/m(2) and lowest in participants with BMI 23.0-24.9 kg/m(2). These findings persisted even after excluding the first 5 years of follow-up with a focus on healthy participants who never smoked, were aged <70 years, and had total cholesterol (TC) levels >or=4.1 mmol/l (N=3712). For both the full sample and healthy participants, all-cause mortality risk did not differ between BMI ranges 21.0-22.9 and 23.0-24.9 kg/m(2). Our findings do not support the recent WHO implications that BMIs <23.0 kg/m(2) is healthy for Asians. Therefore, further studies are needed to identify an optimal BMI range for Asia.  相似文献   
1000.
Tryptophan (Trp)-related secondary metabolism has been implicated in the defense against pathogen infection and insect feeding in various gramineous species. Recently, we also reported that rice plant accumulated serotonin and tryptamine as well as their amide compounds coupled with phenolic acids in response to the infection by fungal pathogen. These compounds were likely to play an important role in the formation of physical barrier to the invading pathogens. To extend our study to elucidate the defensive role of Trp-derived secondary metabolism in gramineous plants, we examined in this study whether it is activated in response to herbivore attack as well. Third leaves of rice plant were fed on by third instar larvae of rice striped stem borer for 24 h or 48 h. The analysis of four Trp-derived metabolites including tryptamine, serotonin feruloyltryptamine (FerTry) and p-coumaroylserotonin (CouSer) by liquid chromatography coupled with tandem mass spectrometry revealed that their contents clearly increased in response to the larvae feeding. The respective amounts of tryptamine, serotonin, FerTry and CouSer in the larvae-fed leaves were 12-, 3.5-, 33- and 140-fold larger than those in control leaves 48 h after the start of feeding.Key words: rice, Oryza sativa, Gramineae, serotonin, secondary metabolism, rice striped stem borer, Chilo suppressalisPlants defend themselves from environmental stresses by utilizing secondary metabolism. One of major biological stresses that plants have to cope with is attack by herbivorous insects. In the interactions with herbivorous insects, various secondary metabolites that are derived from tryptophan (Trp) pathway have been shown to play defensive roles in plants including gramineous species. For example, benzoxazinone glucosides in wheat (Triticum aestivum), rye (Secale sereale) and maize (Zea mays) express toxic and antifeeding effects on herbivorous insects.1,2 Benzoxazinones are biosynthesized from indole-3-glycerol phosphate, an intermediate of Trp synthesis.3,4 Another example of those compounds is gramine in barley (Hordeum vulgare). Gramine is a Trp-rerived indole amine,5 and has been received attention in the resistance mainly against aphids on the basis of its toxicity and deterrence.6We recently found that Trp-derived secondary metabolism is also involved in defense responses of rice (Oryza sativa) leaves to infection by brown spot fungus (Bipolaris oryzae).7 The infection of the fungus activates Trp biosynthesis and accumulation of serotonin and of smaller amounts of tryptamine, feruloyltryptamine (FerTry) and p-coumaroylserotonin (CouSer). In addition, the enhancement of serotonin peroxidase activity and incorporation of serotonin in the cell walls were detected. Thus, it is very likely that that serotonin-derived materials deposit in cell walls after oxidative polymerization to constitute a part of physical defense system of rice, which may be reminiscent of the wound sloughing in animals. These findings prompted us to investigate whether Trp-related secondary metabolism is also involved in the defense of rice plant against the attack by insects, as in the cases of other gramineous plants mentioned above. While the response of plants to pathogenic infection is generally different from that to insect herbivory, Trp-derived secondary metabolites have occasionally been implicated in both responses.810 Here, we report the results of our study to examine the effects of herbivory by rice striped stem borer (Chilo suppressalis) on the Trp derived secondary metabolism in rice leaves.Rice (cv. Nipponbare) leaves were incubated with larvae of C. suppressalis in a feeding tube assembled according to Oikawa et al.,8 Aerial parts of two 12-day-old rice seedlings were excised, and their cutting ends were immersed in distilled water in a vial. Three third instar larvae of C. suppressalis were put on the leaves, and the leaves with larvae were covered by a plastic tube. For comparison, the control leaves were wounded by razor blade at the start of the incubation. After incubation for 24 h or 48 h with 16/8 h LD cycle at 28°C, the leaves were extracted with 10 volumes of 80% methanol, and analyzed by liquid chromatography coupled with tandem mass spectrometry in multiple reaction monitoring mode.As shown in Figure 1, the contents of tryptamine and serotonin increased along with time in the larvae-fed leaves. The respective contents of tryptamine and serotonin in the leaves were 12- and 3.5-fold larger than those in control leaves 48 h after the start of feeding. The accumulation of FerTry and CouSer was also observed after larvae feeding with the contents being 33- and 140-fold larger than those in control leaves, respectively. Their contents, however, were approximately 10-fold smaller than the corresponding amines.Open in a separate windowFigure 1Accumulation of Trp derived metabolites in the leaves attacked by rice striped stem borer. Chemical structures of analyzed compounds (A). The contents of tryptamine (B), serotonin (B), FerTry (C) and CouSer (D) were determined by LC-MS/MS analysis. The third leaves of 12-d-old rice seedlings were fed on by rice striped stem borer (brack bars) or wounded by razor blade as control (white bars). After incubation, the leaves were extracted by 80% methanol. The contents of metabolites at time 0 are represented as gray bars.In the interaction of rice plant with B. oryzae, serotonin was shown to be incorporated into cell walls as a part of physical defense system.7 In an analogous way, modification of cell walls by serotonin might function in sealing the sites injured by insect feeding to protect the leaves from desiccation, and opportunistic and insect-mediated infection by microorganisms. Indeed, at the cutting edge of the leaves, the formation of brown materials was observed. In addition, since serotonin is a neurotransmitter of insects and tryptamine has been indicated to be a neuroactive substance, their accumulation might directly affect behavior and physiology of some insects. High concentrations of tryptamine have been shown to express anti-oviposition activity toward Bemisia tabaci11 and anti-feeding activities toward Malacosoma disstria and Manduca sexta.12The low levels of serotonin, tryptamine and their amides in the control leaves suggest that these compounds are induced in response to some components produced during the interaction between the plant and the herbivore. In this relation, it has been shown that elicitors are present in the saliva of some herbivous insects, which induce volatile emission from the plant to attracts their natural enemies.13,14 Induction of Trp-derived secondary metabolites by the herbivore attack may likely be a result of recognition of some insect-derived molecules by rice leaves, similarly to the induction of volatile emission.The induced accumulation of indole amines and their hydroxycinnamic acid amides in the rice leaves attacked by C. suppressalis suggests that a common signaling pathway might be involved in the responses to pathogen infection and insect feeding. However, the composition of induced compounds was different between the responses to the two biological stresses. The content of tryptamine in the larvae-fed leaves was comparable to that reported in the B. oryzae-infected leaves, whereas the amount of serotonin (approximately 35 nmol/gFW) was much smaller than that in the infected leaves (approximately 250 nmol/gFW). This characteristic was similar to the response of rice leaves to methyl jasmonate (MeJA), which also induced accumulation of these Trp-derived secondary metabolites.7 The strong activation of the conversion of tryptamine to serotonin may require infection-specific signals.The serotonin accumulation in rice appears to be similar to the accumulation of gramine in barley in several aspects. Gramine accumulation has been demonstrated to be induced by either infection by pathogens9 or infestation by the aphid Schizaphis graminum.10 In addition, the gene encoding N-methyltransferase that catalyzes the final reaction in the gramine biosynthetic pathway is upregulated by MeJA, suggesting gramine synthesis is at least partly under the control of jasmonate signaling pathway.15,16 The inducible serotonin production may be an archetypal form of the biosynthesis of more complicated indole amine in barley.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号