首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3366篇
  免费   220篇
  国内免费   2篇
  3588篇
  2022年   15篇
  2021年   39篇
  2020年   14篇
  2019年   23篇
  2018年   39篇
  2017年   12篇
  2016年   49篇
  2015年   78篇
  2014年   87篇
  2013年   192篇
  2012年   130篇
  2011年   169篇
  2010年   97篇
  2009年   84篇
  2008年   149篇
  2007年   144篇
  2006年   130篇
  2005年   142篇
  2004年   172篇
  2003年   148篇
  2002年   157篇
  2001年   147篇
  2000年   150篇
  1999年   125篇
  1998年   48篇
  1997年   50篇
  1996年   38篇
  1995年   30篇
  1994年   37篇
  1993年   39篇
  1992年   80篇
  1991年   74篇
  1990年   67篇
  1989年   75篇
  1988年   69篇
  1987年   50篇
  1986年   51篇
  1985年   50篇
  1984年   43篇
  1983年   36篇
  1982年   22篇
  1981年   27篇
  1980年   18篇
  1979年   26篇
  1978年   25篇
  1977年   18篇
  1976年   28篇
  1975年   14篇
  1973年   16篇
  1971年   12篇
排序方式: 共有3588条查询结果,搜索用时 0 毫秒
961.
The genome of Bombyx mori nucleopolyhedrovirus (BmNPV) is predicted to contain six RING finger proteins: IAP1, ORF35, IAP2, CG30, IE2, and PE38. Several other members of the RING finger family have recently been shown to have the ubiquitin-ligase (E3) activity. We thus examined whether BmNPV RING finger proteins have the E3 activity. In vitro ubiquitination assay with the rabbit reticulocyte lysates and BmNPV RING finger proteins fused with maltose-binding protein (MBP) showed that four of them (IAP2, IE2, PE38, and CG30) were polyubiquitinated in the presence of zinc ion. Furthermore, MBP-IAP2, MBP-IE2, and MBP-PE38 were able to reconstitute ubiquitination activity in cooperation with the Ubc4/5 subfamily of ubiquitin-conjugating enzymes. Mutational analysis also showed that ubiquitination activity of MBP-IAP2, MBP-IE2, and MBP-PE38 were dependent on their RING finger motif. Therefore, these results suggest that IAP2, IE2, and PE38 may function as E3 enzymes during BmNPV infection.  相似文献   
962.
Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes   总被引:2,自引:0,他引:2  
Astrocytic apoptosis may play a role in the central nervous system injury. We previously showed that reperfusion of cultured astrocytes with normal medium after exposure to hydrogen peroxide (H(2)O(2))-containing medium causes apoptosis. This study examines the involvement of the lysosomal enzymes cathepsins B and D in the astrocytic apoptosis. Reperfusion after exposure to H(2)O(2) caused a marked increase in caspase-3 and cathepsin D activities and a marked decrease in cathepsin B activity. Pepstatin A, an inhibitor of cathepsin D, and acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-aldehyde (Ac-DMQD-CHO), a specific inhibitor of caspase-3, blocked the H(2)O(2)-induced decrease in cell viability and DNA ladder formation in cultured rat astrocytes. The (L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA074 Me), a specific inhibitor of cathepsin B, did not affect the H(2)O(2)-induced cell injury. On the other hand, CA074 Me decreased cell viability with DNA ladder formation when cultured in the presence of Ac-DMQD-CHO. This caspase-independent apoptosis was attenuated by the addition of the cathepsin D inhibitor pepstatin A. Caspase-3 like activity was markedly inhibited by Ac-DMQD-CHO and partially by pepstatin A. Pepstatin A and CA074 Me inhibited cathepsin B and cathepsin D activities, respectively, in the presence and absence of Ac-DMQD-CHO. These results suggest that cathepsins B and D are involved in astrocytic apoptosis: cathepsin D acts as a death-inducing factor upstream of caspase-3 and the caspase-independent apoptosis is regulated antagonistically by cathepsins B and D.  相似文献   
963.
964.
965.
Epidermal growth factor (EGF) activates Ras and Rap1 at distinct intracellular regions. Here, we explored the mechanism underlying this phenomenon. We originally noticed that in cells expressing Epac, a cAMP-dependent Rap1 GEF (guanine nucleotide exchange factor), cAMP activated Rap1 at the perinuclear region, as did EGF. However, in cells expressing e-GRF, a recombinant cAMP-responsive Ras GEF, cAMP activated Ras at the peripheral plasma membrane. Based on the uniform cytoplasmic expression of Epac and e-GRF, GEF did not appear to account for the non-uniform increase in the activities of Ras and Rap1. In contrast, when we used probes with reduced sensitivity to GTPase-activating proteins (GAPs), both Ras and Rap1 appeared to be activated uniformly in the EGF-stimulated cells. Furthermore, we calculated the local rate constants of GEFs and GAPs from the video images of Ras activation and found that GAP activity was higher at the central plasma membrane than the periphery. Thus we propose that GAP primarily dictates the spatial regulation of Ras family G proteins, whereas GEF primarily determines the timing of Ras activation.  相似文献   
966.
The use of mutant mice plays a pivotal role in determining the function of genes, and the recently reported germ line transposition of the Sleeping Beauty (SB) transposon would provide a novel system to facilitate this approach. In this study, we characterized SB transposition in the mouse germ line and assessed its potential for generating mutant mice. Transposition sites not only were clustered within 3 Mb near the donor site but also were widely distributed outside this cluster, indicating that the SB transposon can be utilized for both region-specific and genome-wide mutagenesis. The complexity of transposition sites in the germ line was high enough for large-scale generation of mutant mice. Based on these initial results, we conducted germ line mutagenesis by using a gene trap scheme, and the use of a green fluorescent protein reporter made it possible to select for mutant mice rapidly and noninvasively. Interestingly, mice with mutations in the same gene, each with a different insertion site, were obtained by local transposition events, demonstrating the feasibility of the SB transposon system for region-specific mutagenesis. Our results indicate that the SB transposon system has unique features that complement other mutagenesis approaches.  相似文献   
967.
For understanding the precise mechanisms of molecular recognition of proteins, three-dimensional structural analyses of the protein-protein complexes are essential. For this purpose, a new method to reveal complex structures was developed with the assistance of saturation transfer (SAT) and residual dipolar coupling (RDC) by heteronuclear NMR experiments, without any paired intermolecular NOE information. The SAT and RDC experiments provide the information of the interfacial residues and the relative orientations of the two protein molecules, respectively. Docking simulation was then made to reconstruct a complex conformation, which satisfies the SAT and RDC data. The method was applied to the CAD-ICAD complex structure, which was previously determined by the NOE-distance geometry method. The quality of the current model was evaluated.  相似文献   
968.
969.
970.
To examine acute hemodynamic responses to microgravity (microG) in the head, we measured carotid artery pressure (CAP) and jugular vein pressure (JVP) to calculate cephalic perfusion pressure (CPP = CAP - JVP) and recorded images of microvessels in the iris to evaluate capillary blood flow velocity (CBFV) and capillary diameter (CD) in anesthetized rats during 4.5 s of microG induced by free drop. Rats were placed in 30 degrees head-up whole body-tilted (HU, n = 7) or horizontal (flat, n = 6) position. In the flat group, none of the measured variables was significantly affected by microG, whereas in the HU group, CAP, JVP, and CPP increased, respectively, by 23.4 +/- 2.6, 1.3 +/- 0.2, and 22.9 +/- 3.1 mmHg, and CBFV and CD increased, respectively, by 33 +/- 8 and 9 +/- 3%, showing an increase in capillary blood flow. To further examine the mechanisms underlying these CAP and JVP increases, another experiment was performed in which CAP and JVP were measured in anesthetized rats (n = 6) during a postural change from HU to flat. In these animals, the change in JVP was similar to that observed during actual microG, but no change in CAP was seen, indicating that the JVP increase during actual microG is caused by disappearance of the gravitational pressure gradient in the head-to-foot axis, whereas the CAP increase is not. In conclusion, actual microG elicits an increase in CPP due to a greater increase in CAP than JVP, resulting in increased capillary blood flow. Although the increase in JVP is explained by the disappearance of gravitational pressure gradient in the head-to-foot axis as a result of microG, the larger increase in CAP is not.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号