首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1746篇
  免费   114篇
  2023年   8篇
  2022年   10篇
  2021年   15篇
  2020年   17篇
  2019年   18篇
  2018年   18篇
  2017年   24篇
  2016年   31篇
  2015年   52篇
  2014年   63篇
  2013年   93篇
  2012年   106篇
  2011年   109篇
  2010年   60篇
  2009年   64篇
  2008年   96篇
  2007年   88篇
  2006年   84篇
  2005年   97篇
  2004年   99篇
  2003年   102篇
  2002年   79篇
  2001年   37篇
  2000年   28篇
  1999年   43篇
  1998年   36篇
  1997年   17篇
  1996年   22篇
  1995年   23篇
  1994年   25篇
  1993年   37篇
  1992年   30篇
  1991年   28篇
  1990年   17篇
  1989年   17篇
  1988年   14篇
  1987年   30篇
  1986年   20篇
  1985年   15篇
  1984年   5篇
  1983年   8篇
  1982年   13篇
  1981年   11篇
  1980年   5篇
  1979年   15篇
  1978年   3篇
  1977年   9篇
  1974年   3篇
  1973年   2篇
  1972年   6篇
排序方式: 共有1860条查询结果,搜索用时 140 毫秒
51.
52.
53.
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.  相似文献   
54.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
55.
Understanding how social groups function requires studies on how individuals move across the landscape and interact with each other. Ant supercolonies are extreme cooperative units that may consist of thousands of interconnected nests, and their individuals cooperate over large spatial scales. However, the inner structure of suggested supercolonial (or unicolonial) societies has rarely been extensively studied using both genetic and behavioral analyses. We describe a dense supercolony‐like aggregation of more than 1,300 nests of the ant Formica (Coptoformica) pressilabris. We performed aggression assays and found that, while aggression levels were generally low, there was some aggression within the assumed supercolony. The occurrence of aggression increased with distance from the focal nest, in accordance with the genetically viscous population structure we observe by using 10 DNA microsatellite markers. However, the aggressive interactions do not follow any clear pattern that would allow specifying colony borders within the area. The genetic data indicate limited gene flow within and away from the supercolony. Our results show that a Formica supercolony is not necessarily a single unit but can be a more fluid mosaic of aggressive and amicable interactions instead, highlighting the need to study internest interactions in detail when describing supercolonies.  相似文献   
56.
Structure–function studies are frequently practiced on the very diverse group of natural carbohydrate-binding modules in order to understand the target recognition of these proteins. We have taken a step further in the study of carbohydrate-binding modules and created variants with novel binding properties by molecular engineering of one such molecule of known 3D-structure. A combinatorial library was created from the sequence encoding a thermostable carbohydrate-binding module, CBM4-2 from a Rhodothermus marinus xylanase, and the phage-display technology was successfully used for selection of variants with specificity towards different carbohydrate polymers (birchwood xylan, Avicel?, ivory nut mannan and recently also xyloglucan), as well as towards a glycoprotein (human IgG4). Our work not only generated a number of binders with properties that would suite a range of biotechnological applications, but analysis the selected binders also helped us to identify residues important for their specificities.  相似文献   
57.
Abstract

In this paper a short account of our recent research concerning development of new synthetic methods and new reagents for the preparation of DNA and RNA fragments and their analogues is given.

  相似文献   
58.
In the production of ethanol from lignocellulosic material, it is necessary to reach a high ethanol concentration after fermentation. Simply increasing the substrate concentration leads to stirring problems and inhibition of the enzymes and yeast in the process.Batch simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce with 13.7% water-insoluble solids (WIS) (25% total solids (TS)) was run in a stirred-tank reactor as well as in two reactors designed to handle solid or semi-solid material. In all reactors, the overall ethanol yields were only between 5 and 6%. Fermentation of the liquid fraction of the steam-pretreated spruce slurry resulted in an overall ethanol yield of 85%.22 h of prehydrolysis at 48 °C prior to SSF at 32 °C significantly increased the overall ethanol yield to 72% (final ethanol concentration of 47.8 g/L), using the whole slurry of steam-pretreated spruce at a dry matter content of 13.7% WIS (25% TS).  相似文献   
59.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
60.

Background

Recent studies suggest that acute sleep deprivation disrupts cellular immune responses by shifting T helper (Th) cell activity towards a Th2 cytokine profile. Since little is known about more long-term effects, we investigated how five days of sleep restriction would affect pro-inflammatory, chemotactic, Th1- and Th2 cytokine secretion.

Methods

Nine healthy males participated in an experimental sleep protocol with two baseline sleep-wake cycles (sleep 23.00 – 07.00 h) followed by 5 days with restricted sleep (03.00 – 07.00 h). On the second baseline day and on the fifth day with restricted sleep, samples were drawn every third hour for determination of cytokines/chemokines (tumor necrosis factor alpha (TNF-α), interleukin (IL) -1β, IL-2, IL-4 and monocyte chemoattractant protein-1 (MCP-1)) after in vitro stimulation of whole blood samples with the mitogen phytohemagglutinin (PHA). Also leukocyte numbers, mononuclear cells and cortisol were analysed.

Results

5-days of sleep restriction affected PHA-induced immune responses in several ways. There was a general decrease of IL-2 production (p<.05). A shift in Th1/Th2 cytokine balance was also evident, as determined by a decrease in IL2/IL4 ratio. No other main effects of restricted sleep were shown. Two significant interactions showed that restricted sleep resulted in increased TNF-α and MCP-1 in the late evening and early night hours (p’s<.05). In addition, all variables varied across the 24 h day.

Conclusions

5-days of sleep restriction is characterized by a shift towards Th2 activity (i.e. lower 1L-2/IL-4 ratio) which is similar to the effects of acute sleep deprivation and psychological stress. This may have implications for people suffering from conditions characterized by excessive Th2 activity like in allergic disease, such as asthma, for whom restricted sleep could have negative consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号