首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1641篇
  免费   90篇
  2023年   8篇
  2022年   8篇
  2021年   14篇
  2020年   17篇
  2019年   18篇
  2018年   18篇
  2017年   22篇
  2016年   30篇
  2015年   52篇
  2014年   62篇
  2013年   88篇
  2012年   102篇
  2011年   106篇
  2010年   60篇
  2009年   65篇
  2008年   95篇
  2007年   88篇
  2006年   80篇
  2005年   91篇
  2004年   98篇
  2003年   97篇
  2002年   75篇
  2001年   28篇
  2000年   17篇
  1999年   33篇
  1998年   32篇
  1997年   17篇
  1996年   23篇
  1995年   23篇
  1994年   22篇
  1993年   34篇
  1992年   23篇
  1991年   23篇
  1990年   14篇
  1989年   11篇
  1988年   9篇
  1987年   19篇
  1986年   16篇
  1985年   9篇
  1983年   8篇
  1982年   13篇
  1981年   9篇
  1980年   6篇
  1979年   14篇
  1977年   8篇
  1974年   3篇
  1973年   2篇
  1972年   6篇
  1969年   2篇
  1967年   2篇
排序方式: 共有1731条查询结果,搜索用时 15 毫秒
41.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
42.
Understanding how social groups function requires studies on how individuals move across the landscape and interact with each other. Ant supercolonies are extreme cooperative units that may consist of thousands of interconnected nests, and their individuals cooperate over large spatial scales. However, the inner structure of suggested supercolonial (or unicolonial) societies has rarely been extensively studied using both genetic and behavioral analyses. We describe a dense supercolony‐like aggregation of more than 1,300 nests of the ant Formica (Coptoformica) pressilabris. We performed aggression assays and found that, while aggression levels were generally low, there was some aggression within the assumed supercolony. The occurrence of aggression increased with distance from the focal nest, in accordance with the genetically viscous population structure we observe by using 10 DNA microsatellite markers. However, the aggressive interactions do not follow any clear pattern that would allow specifying colony borders within the area. The genetic data indicate limited gene flow within and away from the supercolony. Our results show that a Formica supercolony is not necessarily a single unit but can be a more fluid mosaic of aggressive and amicable interactions instead, highlighting the need to study internest interactions in detail when describing supercolonies.  相似文献   
43.
Structure–function studies are frequently practiced on the very diverse group of natural carbohydrate-binding modules in order to understand the target recognition of these proteins. We have taken a step further in the study of carbohydrate-binding modules and created variants with novel binding properties by molecular engineering of one such molecule of known 3D-structure. A combinatorial library was created from the sequence encoding a thermostable carbohydrate-binding module, CBM4-2 from a Rhodothermus marinus xylanase, and the phage-display technology was successfully used for selection of variants with specificity towards different carbohydrate polymers (birchwood xylan, Avicel?, ivory nut mannan and recently also xyloglucan), as well as towards a glycoprotein (human IgG4). Our work not only generated a number of binders with properties that would suite a range of biotechnological applications, but analysis the selected binders also helped us to identify residues important for their specificities.  相似文献   
44.
Abstract

In this paper a short account of our recent research concerning development of new synthetic methods and new reagents for the preparation of DNA and RNA fragments and their analogues is given.

  相似文献   
45.
In the production of ethanol from lignocellulosic material, it is necessary to reach a high ethanol concentration after fermentation. Simply increasing the substrate concentration leads to stirring problems and inhibition of the enzymes and yeast in the process.Batch simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce with 13.7% water-insoluble solids (WIS) (25% total solids (TS)) was run in a stirred-tank reactor as well as in two reactors designed to handle solid or semi-solid material. In all reactors, the overall ethanol yields were only between 5 and 6%. Fermentation of the liquid fraction of the steam-pretreated spruce slurry resulted in an overall ethanol yield of 85%.22 h of prehydrolysis at 48 °C prior to SSF at 32 °C significantly increased the overall ethanol yield to 72% (final ethanol concentration of 47.8 g/L), using the whole slurry of steam-pretreated spruce at a dry matter content of 13.7% WIS (25% TS).  相似文献   
46.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
47.

Background

Recent studies suggest that acute sleep deprivation disrupts cellular immune responses by shifting T helper (Th) cell activity towards a Th2 cytokine profile. Since little is known about more long-term effects, we investigated how five days of sleep restriction would affect pro-inflammatory, chemotactic, Th1- and Th2 cytokine secretion.

Methods

Nine healthy males participated in an experimental sleep protocol with two baseline sleep-wake cycles (sleep 23.00 – 07.00 h) followed by 5 days with restricted sleep (03.00 – 07.00 h). On the second baseline day and on the fifth day with restricted sleep, samples were drawn every third hour for determination of cytokines/chemokines (tumor necrosis factor alpha (TNF-α), interleukin (IL) -1β, IL-2, IL-4 and monocyte chemoattractant protein-1 (MCP-1)) after in vitro stimulation of whole blood samples with the mitogen phytohemagglutinin (PHA). Also leukocyte numbers, mononuclear cells and cortisol were analysed.

Results

5-days of sleep restriction affected PHA-induced immune responses in several ways. There was a general decrease of IL-2 production (p<.05). A shift in Th1/Th2 cytokine balance was also evident, as determined by a decrease in IL2/IL4 ratio. No other main effects of restricted sleep were shown. Two significant interactions showed that restricted sleep resulted in increased TNF-α and MCP-1 in the late evening and early night hours (p’s<.05). In addition, all variables varied across the 24 h day.

Conclusions

5-days of sleep restriction is characterized by a shift towards Th2 activity (i.e. lower 1L-2/IL-4 ratio) which is similar to the effects of acute sleep deprivation and psychological stress. This may have implications for people suffering from conditions characterized by excessive Th2 activity like in allergic disease, such as asthma, for whom restricted sleep could have negative consequences.  相似文献   
48.
In this study, we compared the effects of four ion channel blockers on rat embryonic heart function during the organogenic period from gestational day (GD) 10 to 15, to determine the changes in dependence on ion channels during rat cardiac development. Rat embryos in culture were exposed to either the human ether‐á‐go‐go‐related gene potassium channel blocker, dofetilide (400 nM); the sodium channel blocker, lidocaine (250 μM); the L‐type calcium channel blocker, nifedipine (1.8 μM); or the multichannel blocker, phenytoin (200 μM). Lidocaine slowed the heart rate (HR) with the effect becoming more severe with increasing GD. Dofetilide slowed the embryonic HR and caused arrhythmias with the most severe effect on GD 11 to 13. Nifedipine primarily caused a negative inotropic effect except on GD 10 when it stopped the heart in most embryos. Phenytoin stopped the heart of most GD 10 to 12 embryos while on GD 13 to 15 phenytoin slowed the heart. The results demonstrate that as the rat heart develops during the organogenic period its functional dependence on ion channels changes markedly. These changes are important for understanding drug effects on the embryo during pregnancy and the methodology used provides a simple procedure for assessing drug effects on the developing heart.  相似文献   
49.
The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (−/−) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTPSer178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.  相似文献   
50.
Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N'',N''''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with 68Ga and 111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a 18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with 18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [natF]AlF-NOTA-P2-RM26 was compared to that of the natGa-loaded peptide using 125I-Tyr4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with 18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p.i. The initial biological results suggest that [18F]AlF-NOTA-P2-RM26 is a promising candidate for PET imaging of GRPR in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号